| 注册
首页|期刊导航|灌溉排水学报|基于优选光谱特征的红壤水分反演模型研究

基于优选光谱特征的红壤水分反演模型研究

邢明杰 徐兴倩 徐伟恒 王二 朱翔 赵琳

灌溉排水学报2025,Vol.44Issue(11):70-79,10.
灌溉排水学报2025,Vol.44Issue(11):70-79,10.DOI:10.13522/j.cnki.ggps.2025171

基于优选光谱特征的红壤水分反演模型研究

Estimating red soil moisture using optimized spectral indices and machine learning

邢明杰 1徐兴倩 2徐伟恒 3王二 3朱翔 1赵琳1

作者信息

  • 1. 云南农业大学 水利学院,昆明 650201
  • 2. 云南农业大学 水利学院,昆明 650201||云南农业大学 国际学院,昆明 650201
  • 3. 西南林业大学 大数据与智能工程学院,昆明 650224
  • 折叠

摘要

Abstract

[Objective]Efficient monitoring of soil moisture at large scales is required for optimizing water resource management and smart agriculture,particularly in red soils where water retention is low and irrigation efficiency is limited.This paper investigates the feasibility of using multispectral remote sensing to indirectly measure the moisture content in red soils.Method]The study area was in Yunnan province.Using unmanned aerial vehicle(UAV)multispectral images(green,red,red-edge,and near-infrared bands)and moisture data measured in the field,we selected 22 classical and improved spectral indices to construct an inversion model.Sensitive indices were screened using three algorithms:the Pearson correlation coefficient(Pccs),variable importance in projection(VIP)and grey relational analysis(GRA).Four machine learning models:random forest(RF),back propagation neural network(BPNN),support vector regression(SVR),and light gradient boosting machine(Light-GBM)were used to estimate soil moisture content using the optimized indices.Result]The VIP algorithm screened out six optimized spectral variables,which significantly improved computational efficiency.Among the four machine learning models we compared,the BPNN was the most robust and general.The combination of VIP and BPNN was the most accurate,and the statistical metrics of its comparison with measured field data were R2=0.72,RMSE=3.36%and RPD=1.90.The R2 of the RF model was 0.94 in the training set,but was reduced to 0.56 in the test set,indicating overfitting.Conclusion]The multispectral inversion model using VIP and BPNN effectively captured the spatiotemporal distribution of red soil moisture in the study area.When combined with additional spectral bands and environmental parameters,this model can be applied in smart agriculture and ecological management.

关键词

多光谱/红壤水分/变量筛选/反演模型

Key words

multispectral/red soil moisture/variable screening/inversion model

分类

农业工程

引用本文复制引用

邢明杰,徐兴倩,徐伟恒,王二,朱翔,赵琳..基于优选光谱特征的红壤水分反演模型研究[J].灌溉排水学报,2025,44(11):70-79,10.

基金项目

云南省基础研究计划农业联合专项(202301BD070001-171) (202301BD070001-171)

国家自然科学基金资助项目(42367025,42307269) (42367025,42307269)

云南省高层次人才培养支持计划"青年拔尖人才"专项(YNWR-QNBJ-2020-030) (YNWR-QNBJ-2020-030)

灌溉排水学报

1672-3317

访问量1
|
下载量0
段落导航相关论文