基于深度特征融合的内窥镜图像分割网络OA
Endoscopic Image Segmentation Network Based on Deep Feature Fusion
胃镜检查是通过检测和切除病变黏膜实现胃癌早期诊断和预防性治疗的医学诊断技术.深度学习方法在胃镜检测中具有较大应用潜力.目前缺乏供研究者使用的公开胃早癌数据集,现有内窥镜分割方法也无法高效识别胃镜病灶.为解该问题,文中提出一个新数据集Colonoscopy,包含早期胃癌病灶分割任务和从健康到早期癌症阶段多分类任务.文中还提出一种基于深度特征融合的内窥镜图像分割架构,以预训练混合 Transformer编码器(Mixed Transformer Encoder,MTE)为主干,使用深度融合特征金字塔解码器,以实现精准的病变分割.所提方法在Colonoscopy数据集中上具有较好的分割性能,并在Kvasir-Seg和CVC-ClinicDB两个大型结肠镜分割数据集中具有较强的泛化能力.
Gastroscope examination is a medical diagnostic technique for early diagnosis and preventative treat-ment of gastric cancer through detection and resection of lesion mucosa.Deep learning method has great application po-tential in gastroscopy.There is currently a lack of publicly available early gastric cancer data sets for researchers to use,and existing endoscopic segmentation methods cannot efficiently identify gastroscopic lesions.To solve this prob-lem,a new dataset Colonoscopy is proposed in this study,including the segmentation task of early gastric cancer lesions and the multi-classification task from healthy to early cancer stage.An endoscopic image segmentation architecture based on deep feature fusion is also proposed.A pre-trained MTE(Mixed Transformer Encoder)is used as the main work,and a deep fusion feature pyramid decoder is used to achieve accurate lesion segmentation.The proposed method has better performance in Colonoscopy data set,and has better generalization ability in two large colonoscopy data sets including Kvasir-Seg and CVC-ClinicDB.
向振凯;王永雄;张佳鹏
上海理工大学 光电信息与计算机工程学院,上海 200093上海理工大学 光电信息与计算机工程学院,上海 200093上海理工大学 光电信息与计算机工程学院,上海 200093
计算机与自动化
胃早癌内窥镜图像分割病理诊断深度学习Transformer特征融合一致性分割数据集
early gastric cancerendoscopic image segmentationpathological diagnosisdeep learningTrans-formerfeature fusionconsistencysegmentation data set
《电子科技》 2025 (11)
18-24,7
上海市自然科学基金(22ZR1443700) Natural Science Foundation of Shanghai(22ZR1443700)
评论