| 注册
首页|期刊导航|电子科技|基于深度特征融合的内窥镜图像分割网络

基于深度特征融合的内窥镜图像分割网络

向振凯 王永雄 张佳鹏

电子科技2025,Vol.38Issue(11):18-24,7.
电子科技2025,Vol.38Issue(11):18-24,7.DOI:10.16180/j.cnki.issn1007-7820.2025.11.003

基于深度特征融合的内窥镜图像分割网络

Endoscopic Image Segmentation Network Based on Deep Feature Fusion

向振凯 1王永雄 1张佳鹏1

作者信息

  • 1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 折叠

摘要

Abstract

Gastroscope examination is a medical diagnostic technique for early diagnosis and preventative treat-ment of gastric cancer through detection and resection of lesion mucosa.Deep learning method has great application po-tential in gastroscopy.There is currently a lack of publicly available early gastric cancer data sets for researchers to use,and existing endoscopic segmentation methods cannot efficiently identify gastroscopic lesions.To solve this prob-lem,a new dataset Colonoscopy is proposed in this study,including the segmentation task of early gastric cancer lesions and the multi-classification task from healthy to early cancer stage.An endoscopic image segmentation architecture based on deep feature fusion is also proposed.A pre-trained MTE(Mixed Transformer Encoder)is used as the main work,and a deep fusion feature pyramid decoder is used to achieve accurate lesion segmentation.The proposed method has better performance in Colonoscopy data set,and has better generalization ability in two large colonoscopy data sets including Kvasir-Seg and CVC-ClinicDB.

关键词

胃早癌/内窥镜图像分割/病理诊断/深度学习/Transformer/特征融合/一致性/分割数据集

Key words

early gastric cancer/endoscopic image segmentation/pathological diagnosis/deep learning/Trans-former/feature fusion/consistency/segmentation data set

分类

计算机与自动化

引用本文复制引用

向振凯,王永雄,张佳鹏..基于深度特征融合的内窥镜图像分割网络[J].电子科技,2025,38(11):18-24,7.

基金项目

上海市自然科学基金(22ZR1443700) Natural Science Foundation of Shanghai(22ZR1443700) (22ZR1443700)

电子科技

1007-7820

访问量1
|
下载量0
段落导航相关论文