首页|期刊导航|电子科技|基于异构脑电特征图空间注意力迁移学习的情感识别

基于异构脑电特征图空间注意力迁移学习的情感识别OA

Emotion Recognition Based on Heterogeneous EEG Feature Map using Spatial Attention Transfer Learning

中文摘要英文摘要

基于脑电信号(Electroencephalogram,EEG)的情感识别受脑电数据量和设备电极规格限制,迁移学习方法通过插值法将脑电信号转换为脑功能地形图,并利用预训练模型进行特征提取,但该方法在提取情感信息方面存在局限性.为提高迁移学习性能和情感识别泛化能力,文中提出一种基于异构脑电特征图空间注意力迁移学习的情感识别方法.利用插值法构建的脑功能地形图数据预训练一个基于空间注意力机制和残差网络的脑电特征映射网络,作为插值法的替换方案与迁移学习模型结合,在情感识别模型训练时利用空间注意力机制更有效地捕获情感信息.将所提方法在DEAP、HCI、SEED-IV和SEED-V这 4 个情感识别数据库上验证,准确率分别为 54.8%、63.6%、32.8%和 25.9%.

Emotion recognition based on EEG(Electroencephalogram)signals is limited by the volume of EEG data and the specifications of the equipment electrodes.The transfer learning methods convert EEG signals into brain functional topographic maps through interpolation and utilize pre-trained models for feature extraction,but this meth-od has limitations in the extraction of emotional information.To improve the performance of transfer learning and the generalization ability of emotion recognition,this study proposes an emotion recognition method based on heterogene-ous EEG feature map using spatial attention transfer learning.A brain feature mapping network based on spatial at-tention mechanism and residual network is pre-trained using the brain functional topographic data interpolated by in-terpolation method.As an alternative to interpolation method,the spatial attention mechanism is combined with trans-fer learning model to capture emotion information more effectively in the training of emotion recognition model.The proposed method is verified on DEAP,HCI,SEED-IV and SEED-V emotion recognition databases,and the accura-cy is 54.8%,63.6%,32.8%and 25.9%,respectively.

王琦;吴文龙;李汭钉;尹钟

上海理工大学 光电信息与计算机工程学院,上海 200093上海理工大学 光电信息与计算机工程学院,上海 200093上海理工大学 光电信息与计算机工程学院,上海 200093上海理工大学 光电信息与计算机工程学院,上海 200093

计算机与自动化

深度学习迁移学习脑电图情感识别注意力机制异构脑电特征图插值机器学习残差网络

deap learningtransfer learningEEGemotion recognitionattention mechanismheterogeneous EEG feature map interpolationmachine learningresidual network

《电子科技》 2025 (11)

79-86,8

国家自然科学基金(61703277)上海青年科技英才扬帆计划(17YF1427000) National Natural Science Foundation of China(61703277)Shanghai Sailing Program(17YF1427000)

10.16180/j.cnki.issn1007-7820.2025.11.010

评论