| 注册
首页|期刊导航|火力与指挥控制|基于动态贝叶斯网络的代价敏感目标意图识别

基于动态贝叶斯网络的代价敏感目标意图识别

翟明圆 应淮冰 王武阳 何立栋 王晓玲

火力与指挥控制2025,Vol.50Issue(10):101-110,10.
火力与指挥控制2025,Vol.50Issue(10):101-110,10.DOI:10.3969/j.issn.1002-0640.2025.10.013

基于动态贝叶斯网络的代价敏感目标意图识别

Cost Sensitive Target Intention Recognition Based on Dynamic Bayesian Networks

翟明圆 1应淮冰 2王武阳 2何立栋 2王晓玲3

作者信息

  • 1. 中国航空工业集团公司沈阳飞机设计研究所,沈阳 110034||东北大学信息科学与工程学院,沈阳 110819
  • 2. 南京理工大学自动化学院,南京 210094
  • 3. 南京邮电大学自动化学院,南京 210023
  • 折叠

摘要

Abstract

Accurate recognition of target intention is crucial for battlefield situational assessment.To address the issue of inconclusive reasoning due to varying sequence lengths in the process of intention decomposition and inference,this paper proposes a novel solution.This approach integrates dynamic Bayesian networks with a cost-sensitive mechanism and introduces a dynamic time warping algorithm tailored to optimize the assessment of intention confidence.In the initial stages where adversary intentions are not fully revealed,adaptive truncation of the decomposed intention sequences is employed.The similarity between these truncated sequences and the inference sequence is calculated,normalized,and used to enhance the precision of intention confidence calculations,thereby boosting the reliability of early-stage inference results on adversary intentions.Furthermore,the Three-way decision theory is introduced to manage the cost of misidentifying intentions,reducing the computational complexity of Three-way decision theory in multi-classification problems by standardizing cost calculations.Simulation results demonstrate that the proposed algorithm successfully combines dynamic features in intention recognition with cost sensitivity considerations.Additionally,it exhibits robust performance in scenarios with partially missing data,effectively mitigating the impact of incomplete data on recognition outcomes.

关键词

意图识别/动态贝叶斯网络/代价敏感/3支决策/动态时间规整

Key words

intent recognition/dynamic bayesian network/cost sensitive/three-way decision/dynamic time warping

分类

武器工业

引用本文复制引用

翟明圆,应淮冰,王武阳,何立栋,王晓玲..基于动态贝叶斯网络的代价敏感目标意图识别[J].火力与指挥控制,2025,50(10):101-110,10.

基金项目

国家自然科学基金(61973163) (61973163)

江苏省自然科学基金优秀青年基金资助项目(BK20220104) (BK20220104)

火力与指挥控制

OA北大核心

1002-0640

访问量0
|
下载量0
段落导航相关论文