| 注册
首页|期刊导航|解放军医学杂志|基于XGBoost-SHAP方法的急性主动脉夹层患者术后死亡风险模型的构建

基于XGBoost-SHAP方法的急性主动脉夹层患者术后死亡风险模型的构建

张新 王楷文 韩铁生 赵永波 马冬 方敏 曹轶 李婷婷 刘献孔 党嘉毅 赵雪森 任洪钦 耿佳泽

解放军医学杂志2025,Vol.50Issue(10):1226-1234,9.
解放军医学杂志2025,Vol.50Issue(10):1226-1234,9.DOI:10.11855/j.issn.0577-7402.1728.2025.0805

基于XGBoost-SHAP方法的急性主动脉夹层患者术后死亡风险模型的构建

Construction of a postoperative mortality risk model for patients with acute aortic dissection based on XGBoost-SHAP method

张新 1王楷文 2韩铁生 1赵永波 3马冬 4方敏 1曹轶 1李婷婷 1刘献孔 2党嘉毅 2赵雪森 2任洪钦 2耿佳泽2

作者信息

  • 1. 华北理工大学公共卫生学院,河北 唐山 063000
  • 2. 神经与血管教育部重点实验室/河北省心血管稳态与衰老重点实验室/河北医科大学生物化学与分子生物学研究室/河北医科大学基础医学院,河北 石家庄 050017
  • 3. 河北医科大学第四医院心外科,河北 石家庄 050011
  • 4. 华北理工大学公共卫生学院,河北 唐山 063000||神经与血管教育部重点实验室/河北省心血管稳态与衰老重点实验室/河北医科大学生物化学与分子生物学研究室/河北医科大学基础医学院,河北 石家庄 050017
  • 折叠

摘要

Abstract

Objective To develop a predictive model for postoperative mortality risk in patients with acute aortic dissection(AAD)using the Extreme Gradient Boosting(XGBoost)algorithm combined with Shapley Additive Explanation(SHAP),and to establish a prediction website to serve as a diagnostic and therapeutic support platform for clinicians and patients.Methods A retrospective cohort study design was adopted.Data from 782 AAD patients who underwent surgical treatment at the Fourth Hospital of Hebei Medical University from January 2013 to December 2023 were collected,including basic information and initial serum biomarker test results.Patients were randomly divided into training and test sets at a 7:3 ratio.An external validation set consisting of 313 AAD patients admitted to the Second Hospital of Hebei Medical University from January 2020 to December 2023 was also established for further model validation.Variables were screened using LASSO regression,and an XGBoost machine learning model was constructed and interpreted using SHAP.The predictive performance of the model was evaluated using receiver operating characteristic(ROC)curve analysis.Using the Shiny package,the XGBoost model was deployed to shinyapps.io to create a prediction website for postoperative mortality risk in AAD patients.One patient was selected by simple random sampling from the test set and the external validation set respectively for the prediction example on the Shiny webpage.Results The XGBoost model demonstrated high predictive performance for postoperative mortality in AAD patients,with area under the ROC curve(AUC)values of 0.928(95%CI 0.901-0.956)in the training set,0.919(95%CI 0.891-0.949)in the test set,and 0.941(95%CI 0.915-0.967)in the external validation set.SHAP values indicated the following order of variable importance in the model(from highest to lowest):"lactate dehydrogenase""blood chlorine""multiple organ injury""carbon dioxide combining power""prothrombin time""α-hydroxybutyric acid""creatine kinase isoenzyme""Stanford classification""combined use of bedside blood purification""gender""acute kidney injury""gastrointestinal bleeding""brain injury"and"shock".A risk prediction website for adverse postoperative outcomes in AAD patients was developed using XGBoost-SHAP method(https://dun-dunxiaolu.shinyapps.io/document/)and validated with examples.One randomly selected patient from each of the test and external validation sets was applied:the predicted mortality risk value for patient 1(who died postoperatively)was 0.9539,and that for patient 2(who survived postoperatively)was 0.0206.Conclusions The XGBoost-SHAP model demonstrates high accuracy in predicting postoperative mortality risk for AAD patients.The online prediction tool established based on this model enhances the identification efficiency of high-risk postoperative mortality patients.

关键词

机器学习/预测模型/急性主动脉夹层/术后死亡

Key words

machine learning/prediction model/acute aortic dissection/postoperative mortality

分类

临床医学

引用本文复制引用

张新,王楷文,韩铁生,赵永波,马冬,方敏,曹轶,李婷婷,刘献孔,党嘉毅,赵雪森,任洪钦,耿佳泽..基于XGBoost-SHAP方法的急性主动脉夹层患者术后死亡风险模型的构建[J].解放军医学杂志,2025,50(10):1226-1234,9.

基金项目

国家自然科学基金(82270508) (82270508)

河北省自然科学基金面上项目(H2022206279) (H2022206279)

神经与血管生物学教育部重点实验室主任基金青年基金项目(NV20210006) (NV20210006)

河北省高等学校科学技术研究项目(QN2022164) (QN2022164)

河北省医学科学研究重点项目(20221293) (20221293)

河北省卫生健康委政府资助临床医学优秀人才培养项目(ZF2025226).This work was supported by the National Natural Science Foundation of China(82270508),the Hebei Provincial Natural Science Foundation General Project(H2022206279),the Youth Fund Project of the Director's Fund of the Key Laboratory of Neurobiology and Vascular Biology of the Ministry of Education(NV20210006),the Science and Technology Research Project of Higher Education Institutions in Hebei Province(QN2022164),the Key Project of Medical Science Research of Hebei Province(20221293),and the Hebei Provincial Health Commission Government-Funded Project for Cultivating Outstanding Talents in Clinical Medicine(ZF2025226) (ZF2025226)

解放军医学杂志

OA北大核心

0577-7402

访问量0
|
下载量0
段落导航相关论文