| 注册
首页|期刊导航|计量学报|基于CoAtNet-LSTM模型的多传感器信息融合刀具磨损预测

基于CoAtNet-LSTM模型的多传感器信息融合刀具磨损预测

李亚 尚轩丞 王海瑞 朱贵富

计量学报2025,Vol.46Issue(10):1433-1445,13.
计量学报2025,Vol.46Issue(10):1433-1445,13.DOI:10.3969/j.issn.1000-1158.2025.10.05

基于CoAtNet-LSTM模型的多传感器信息融合刀具磨损预测

Based on CoAtNet-LSTM Model Multi-Sensor Information Fusion for Proposed Tool Wear

李亚 1尚轩丞 1王海瑞 1朱贵富2

作者信息

  • 1. 昆明理工大学 信息工程与自动化学院,云南 昆明 650500
  • 2. 昆明理工大学 信息工程与自动化学院,云南 昆明 650500||昆明理工大学 信息化建设管理中心,云南 昆明 650500||昆明理工大学-曙光信息产业股份有限公司AI联合研究中心,云南 昆明 650500
  • 折叠

摘要

Abstract

Proposed a tool wear prediction model based is proposed on the long short-term memory(LSTM)and CoAtNet.Features are extracted from the sensor signals in the time domain,frequency domain,and time-frequency domain,followed by outlier detection and processing of signal features using the Isolation Forest algorithm.These processed features are then fed into the prediction model to obtain tool wear predictions,with model hyperparameters optimized through the Hyperband algorithm.The proposed model is validated using the PHM2010 CNC milling tool dataset to verify prediction accuracy.Experimental results demonstrate that the coefficient of determination of the proposed model shows average improvements of 12.73%and 16.44%compared to the original CoAtNet and LSTM network models,respectively.

关键词

几何量计量/刀具磨损/CoAtNet-LSTM模型/长短期时间记忆网络/Hyperband算法/孤立森林算法

Key words

geometric measurement/tool wear/CoAtNet-LSTM model/long and short term temporal memory networks/hyperband algorithm/isolation forest

引用本文复制引用

李亚,尚轩丞,王海瑞,朱贵富..基于CoAtNet-LSTM模型的多传感器信息融合刀具磨损预测[J].计量学报,2025,46(10):1433-1445,13.

基金项目

国家自然科学基金(61863016) (61863016)

计量学报

OA北大核心

1000-1158

访问量0
|
下载量0
段落导航相关论文