| 注册
首页|期刊导航|计量学报|YOLOv5-LED水母识别分类算法

YOLOv5-LED水母识别分类算法

高美静 尹浩正 傅昊翔 王昆达 燕永浩 解运佳

计量学报2025,Vol.46Issue(10):1461-1469,9.
计量学报2025,Vol.46Issue(10):1461-1469,9.DOI:10.3969/j.issn.1000-1158.2025.10.08

YOLOv5-LED水母识别分类算法

Jellyfish Recognition and Classification Algorithm Based on YOLOv5-LED

高美静 1尹浩正 2傅昊翔 3王昆达 3燕永浩 3解运佳3

作者信息

  • 1. 北京理工大学 集成电路与电子学院,北京 100081||北京理工大学 唐山研究院,河北 唐山 063000
  • 2. 燕山大学 信息科学与工程学院 河北省特种光纤与光纤传感重点实验室,河北 秦皇岛 066004
  • 3. 北京理工大学 集成电路与电子学院,北京 100081
  • 折叠

摘要

Abstract

In response to issues such as low accuracy,poor real-time performance,and limited recognition types in existing jellyfish recognition algorithms,a novel algorithm named YOLOv5-LED for jellyfish recognition and classification is proposed.Firstly,G-Conv module,G-BottleNeck module,and G-C3 module are designed,forming the basis for a Ghost-based feature extraction module.Subsequently,a four-scale feature detection head structure is introduced,along with a feature fusion structure based on bidirectional cross-scale PANet and the incorporation of CBAM attention mechanism,resulting in the creation of a new jellyfish detection and recognition algorithm model YOLOv5-LED.Finally,improvements are made to the IOU loss function by introducing a distribution loss function based on KL divergence to replace the cross-entropy loss function,and the candidate box generation algorithm is enhanced.Moreover,a method based on Cluster NMS is introduced to replace the weighted NMS algorithm in YOLOv5.Experimental results show that with a threshold of 0.5∶0.95,the average detection precision of YOLOv5-LED improved by 2.7%compared to the base YOLOv5.The parameter count decreased by 13.6%,and the computational load reduced by 7.2%.These improvements not only enhance precision but also reduce parameters and computational complexity,achieving network lightweighting.

关键词

光学计量/水母检测与识别/YOLOv5-LED/Ghost轻量化/四尺度特征融合

Key words

optical metrology/jellyfish detection and recognition/YOLOv5-LED/Ghost lightweight/Four scale feature fusion

引用本文复制引用

高美静,尹浩正,傅昊翔,王昆达,燕永浩,解运佳..YOLOv5-LED水母识别分类算法[J].计量学报,2025,46(10):1461-1469,9.

基金项目

国家自然科学基金(61971373) (61971373)

河北省自然科学基金(F2023105001) (F2023105001)

计量学报

OA北大核心

1000-1158

访问量0
|
下载量0
段落导航相关论文