| 注册
首页|期刊导航|山西大学学报(自然科学版)|一类具有非线性发生率的随机SIR模型的Melnikov混沌

一类具有非线性发生率的随机SIR模型的Melnikov混沌

石艳香

山西大学学报(自然科学版)2025,Vol.48Issue(6):1103-1112,10.
山西大学学报(自然科学版)2025,Vol.48Issue(6):1103-1112,10.DOI:10.13451/j.sxu.ns.2025079

一类具有非线性发生率的随机SIR模型的Melnikov混沌

Melnikov Analysis of Chaos in a Stochastic SIR Model with Nonlinear Incidence Rate

石艳香1

作者信息

  • 1. 山西大学 数学与统计学院,山西 太原 030006
  • 折叠

摘要

Abstract

In view of the fact that the prevalence of diseases is often disturbed by random factors,this paper studies the chaotic dy-namics of a class of SIR model with nonlinear incidence rate through the infection rate disturbed by bounded noise.Based on the homoclinic bifurcation and by using the stochastic Melnikov theory,from the perspective of mathematical theory,the sufficient condition for the possible occurrence of chaos in the model is derived,and the threshold of chaos in the model under bounded noise disturbance is obtained.Moreover,the influence of the noise amplitude on the chaotic dynamic behavior of the SIR model is elucidated.Numerical simulations,including potential,threshold curve graphs,and phase portraits,are used to verify the results of the theoretical analysis.The research results contribute to accurately predicting the disease transmission trends,provide theoretical support for formulating public health prevention and control strategies,and facilitate the scientific prevention and control of epi-demics.

关键词

非线性发生率/Melnikov理论/混沌/同宿分岔

Key words

nonlinear incidence rate/Melnikov theorem/chaos/homoclinic bifurcation

分类

数学

引用本文复制引用

石艳香..一类具有非线性发生率的随机SIR模型的Melnikov混沌[J].山西大学学报(自然科学版),2025,48(6):1103-1112,10.

基金项目

国家自然科学基金(12571537) (12571537)

山西省自然科学基金(201901D111041 ()

201601D202002) ()

山西大学学报(自然科学版)

OA北大核心

0253-2395

访问量0
|
下载量0
段落导航相关论文