| 注册
首页|期刊导航|医学信息|基于机器学习的临床心电图自动分类模型设计

基于机器学习的临床心电图自动分类模型设计

林加论 李晓玲 夏金阳 张锦

医学信息2025,Vol.38Issue(21):1-7,7.
医学信息2025,Vol.38Issue(21):1-7,7.DOI:10.3969/j.issn.1006-1959.2025.21.001

基于机器学习的临床心电图自动分类模型设计

Design of Clinical Electrocardiogram Automatic Classification Model Based on Machine Learning

林加论 1李晓玲 1夏金阳 1张锦1

作者信息

  • 1. 海南医科大学智能医学与技术学院<大数据研究中心>,海南 海口 571199
  • 折叠

摘要

Abstract

Electrocardiogram(ECG)is a non-invasive one-dimensional medical signal collected on the surface of the human body,which can reflect the changes in electrophysiological signals of cardiac muscle cells during the beating process of the human heart,thus reflecting the health status of the human heart.This article will study the automatic classification technology of electrocardiogram based on Python+TensorFlow2,using the MIT-BIH electrocardiogram database as the research data source,and following the AAMI EC57 standard to classify heartbeats into 5 categories.The constructed electrocardiogram classification model can be used to identify different categories of heart diseases by recognizing 5 types of arrhythmias,in order to reduce the clinical diagnosis cost of arrhythmias and assist doctors in analyzing electrocardiograms.

关键词

机器学习/卷积神经网络/心电信号/特征提取

Key words

Machine learning/Convolutional neural network/ECG signal/Feature extraction

分类

信息技术与安全科学

引用本文复制引用

林加论,李晓玲,夏金阳,张锦..基于机器学习的临床心电图自动分类模型设计[J].医学信息,2025,38(21):1-7,7.

基金项目

海南省自然科学基金面上项目(编号:622MS067) (编号:622MS067)

医学信息

1006-1959

访问量0
|
下载量0
段落导航相关论文