| 注册
首页|期刊导航|药物分析学报(英文)|GPT2-ICC:A data-driven approach for accurate ion channel identification using pre-trained large language models

GPT2-ICC:A data-driven approach for accurate ion channel identification using pre-trained large language models

Zihan Zhou Qiansen Zhang Juwen Shen Huaiyu Yang Yang Yu Chengji Yang Leyan Cao Shaoying Zhang Junnan Li Yingnan Zhang Huayun Han Guoliang Shi

药物分析学报(英文)2025,Vol.15Issue(8):1800-1809,10.
药物分析学报(英文)2025,Vol.15Issue(8):1800-1809,10.DOI:10.1016/j.jpha.2025.101302

GPT2-ICC:A data-driven approach for accurate ion channel identification using pre-trained large language models

GPT2-ICC:A data-driven approach for accurate ion channel identification using pre-trained large language models

Zihan Zhou 1Qiansen Zhang 1Juwen Shen 1Huaiyu Yang 1Yang Yu 2Chengji Yang 1Leyan Cao 1Shaoying Zhang 1Junnan Li 1Yingnan Zhang 1Huayun Han 1Guoliang Shi2

作者信息

  • 1. Shanghai Key Laboratory of Regulatory Biology,Institute of Biomedical Sciences and School of Life Sciences,East China Normal University,Shanghai,200241,China
  • 2. College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing,210000,China
  • 折叠

摘要

关键词

Ion channel/Artificial intelligence/Representation learning/GPT2/Protein language model

Key words

Ion channel/Artificial intelligence/Representation learning/GPT2/Protein language model

引用本文复制引用

Zihan Zhou,Qiansen Zhang,Juwen Shen,Huaiyu Yang,Yang Yu,Chengji Yang,Leyan Cao,Shaoying Zhang,Junnan Li,Yingnan Zhang,Huayun Han,Guoliang Shi..GPT2-ICC:A data-driven approach for accurate ion channel identification using pre-trained large language models[J].药物分析学报(英文),2025,15(8):1800-1809,10.

基金项目

This work is funded by grants from the National Key Research and Development Program of China(Grant Nos.:2022YFE0205600 and 2022YFC3400504),the National Natural Science Foundation of China(Grant Nos.:82373792 and 82273857),the Fundamental Research Funds for the Central Universities,China,and the East China Normal University Medicine and Health Joint Fund,China(Grant No.:2022JKXYD07001).We are also thankful for the support of the ECNU Multifunctional Platform for Innovation(001). (Grant Nos.:2022YFE0205600 and 2022YFC3400504)

药物分析学报(英文)

2095-1779

访问量4
|
下载量0
段落导航相关论文