| 注册
首页|期刊导航|液晶与显示|基于两阶段残差条件扩散网络的遥感图像超分辨重建

基于两阶段残差条件扩散网络的遥感图像超分辨重建

卜丽静 陈香雪 张正鹏 吴俊

液晶与显示2025,Vol.40Issue(11):1647-1660,14.
液晶与显示2025,Vol.40Issue(11):1647-1660,14.DOI:10.37188/CJLCD.2025-0158

基于两阶段残差条件扩散网络的遥感图像超分辨重建

Two-stage residual conditional diffusion network for super-resolution reconstruction of remote sensing images

卜丽静 1陈香雪 2张正鹏 2吴俊3

作者信息

  • 1. 湘潭大学 自动化与电子信息学院,湖南 湘潭 411100||湖南国家应用数学中心,湖南 湘潭 411105
  • 2. 湘潭大学 自动化与电子信息学院,湖南 湘潭 411100
  • 3. 北京空间机电研究所,北京 100094
  • 折叠

摘要

Abstract

When the traditional diffusion model is used for super-resolution reconstruction of remote sensing images,there are difficulties such as insufficient utilization of a priori conditions,lengthy sampling steps,and poor recovery of high frequency details.In this paper,we propose a two-stage residual conditional diffusion super-resolution network(TRCDSR).In the first stage generates preliminary super-resolution results with a pre-trained lightweight CNN model to provide a high-quality structural priori for the diffusion model.In the second stage,we introduce the residual conditional diffusion mechanism,which takes the residual signals as the input to let the noise prediction network to focus on the high-frequency detail reconstruction.By improving the DDIM inverse sampling formula,the residual correction process is decoupled into a deterministic prediction term and a random noise term,and the high-quality reconstruction is completed in 20~50 steps.The multi-scale prior condition enhancement module(PCEM)and the fusion of spatial and channel attention mechanism(FAN)are further introduced to enhance the model's adaptability to complex remote sensing scenes.Experiments on several remote sensing datasets,such as AID,SECOND,RSSCN,etc.,show that TRCDSR outperforms other diffusion models,GAN and Transformer-like methods in terms of reconstruction quality,computational efficiency and generalization ability.

关键词

扩散模型/遥感超分辨率重建/残差网络/先验条件增强

Key words

diffusion model/remote sensing super-resolution reconstruction/residual network/enhancement of a priori conditions

分类

信息技术与安全科学

引用本文复制引用

卜丽静,陈香雪,张正鹏,吴俊..基于两阶段残差条件扩散网络的遥感图像超分辨重建[J].液晶与显示,2025,40(11):1647-1660,14.

基金项目

国家重点研究发展计划(No.2020YFA0713503) (No.2020YFA0713503)

湖南省教育厅湖南省普通高等学校教学改革研究项目(No.HNJG-20230279) (No.HNJG-20230279)

湖南省教育厅科研项目(No.23C0059) Supported by National Key Research and Development Program(No.2020YFA0713503) (No.23C0059)

Hunan Provincial Department of Education Hunan Provincial Teaching Reform Research Project for Regular Higher Education Institutions(No.HNJG-20230279) (No.HNJG-20230279)

Hunan Provincial Department of Education Scientific Research Project(No.23C0059) (No.23C0059)

液晶与显示

OA北大核心

1007-2780

访问量1
|
下载量0
段落导航相关论文