| 注册
首页|期刊导航|液晶与显示|基于局部上下文增强的快速3D弱特征目标检测方法

基于局部上下文增强的快速3D弱特征目标检测方法

张洋 孙海江 张笑闻 纪勇

液晶与显示2025,Vol.40Issue(11):1675-1687,13.
液晶与显示2025,Vol.40Issue(11):1675-1687,13.DOI:10.37188/CJLCD.2025-0145

基于局部上下文增强的快速3D弱特征目标检测方法

Fast 3D weak feature object detection method based on local context enhancement

张洋 1孙海江 2张笑闻 1纪勇3

作者信息

  • 1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033||中国科学院大学,北京 100049
  • 2. 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
  • 3. 中移(深圳)物联网有限公司,广东 深圳市 518052
  • 折叠

摘要

Abstract

3D object detection has extensive applications in autonomous driving and embodied intelligence,yet it struggles with poor discrimination and high detection difficulty for weak-featured objects in scenes—such as distant,small,or occluded objects.To address this,this paper proposes a fast 3D weak-feature object detection method enhanced by local context.First,to address the challenge of sparse feature representation for weak targets,we introduce the Local Sparse Feature Enhancement Module(LSFE).This module adaptively adjusts feature weights at local spatial positions to enhance the expressive power of sparse features,thereby increasing the model's sensitivity to sparse characteristics.Second,to mitigate background interference affecting weak-featured objects,the Multi-Scale Context Learning Module(MSCL)is introduced.It integrates spatial and channel-wise attention mechanisms to acquire multi-scale contextual information and suppress background noise.Finally,to better utilize shallow-layer features,a high-resolution feature layer is added to the network's detection head structure,enhancing the perception of object details.Experimental results on the KITTI dataset demonstrate that our method significantly improves detection accuracy for weakly featured objects compared to baseline approaches:mAP increases by 12.78%for Pedestrians,2.69%for Cyclists,and 6.84%for Cars.Our method achieves high-precision detection while maintaining real-time inference speed,providing an effective solution for 3D object detection in complex scenes.

关键词

自动驾驶/点云数据/3D目标检测/弱特征目标检测/局部上下文学习

Key words

autonomous driving/point cloud data/3D object detection/weak feature target detection/local context learning

分类

计算机与自动化

引用本文复制引用

张洋,孙海江,张笑闻,纪勇..基于局部上下文增强的快速3D弱特征目标检测方法[J].液晶与显示,2025,40(11):1675-1687,13.

基金项目

国家自然科学基金面上项目(No.62475255) (No.62475255)

国家自然科学基金青年项目(No.62401538,No.62401539) Supported by General Program of National Natural Science Foundation of China(No.62475255) (No.62401538,No.62401539)

Youth Project of National Natural Science Foundation of China(No.62401538,No.62401539) (No.62401538,No.62401539)

液晶与显示

OA北大核心

1007-2780

访问量0
|
下载量0
段落导航相关论文