| 注册
首页|期刊导航|中国造纸|基于机器视觉与深度学习的烟用商标纸质量评价方法研究

基于机器视觉与深度学习的烟用商标纸质量评价方法研究

王律 陈仁宇 许彦旻 张俊 彭云发 詹映 曹昌清 斯勇 沈强 丁冉 林森 沈陟彦 薛辰 夏志骋

中国造纸2025,Vol.44Issue(11):192-199,8.
中国造纸2025,Vol.44Issue(11):192-199,8.DOI:10.11980/j.issn.0254-508X.2025.11.026

基于机器视觉与深度学习的烟用商标纸质量评价方法研究

Study on Quality Evaluation Method of Cigarette Trademark Paper Based on Machine Vision and Deep Learning

王律 1陈仁宇 1许彦旻 1张俊 1彭云发 2詹映 2曹昌清 1斯勇 1沈强 2丁冉 1林森 1沈陟彦 1薛辰 2夏志骋1

作者信息

  • 1. 上海烟草集团有限责任公司,上海,200082
  • 2. 上海创和亿电子科技发展有限公司,上海,200090
  • 折叠

摘要

Abstract

To investigate the application of machine vision technology integrating deep learning in evaluating the quality inspection results of cigarette trademark paper,this study proposed a comprehensive evaluation method.A high-resolution industrial camera,customized light sources,and specialized software systems were employed to construct an annotated dataset.Dynamic threshold ORB feature detection,opti-mized RANSAC registration,and multi-band fusion strategies were adopted,effectively eliminating stitching seams.The images PSNR of 38.9 dB and SSIM of 0.94.For feature recognition,the YOLOv8 model was enhanced by introducing a CBAM attention module,combined with a ResNet-34 backbone network and FPN multi-scale feature fusion,achieving 99.4%mAP50,99.6%recall,and 99.0%precision on the test set.A dual-branch Siamese network was designed to compute similarity by fusing SIFT descriptors and deep semantic features,achieving average recognition accuracies of 97.64%for small box trademark paper and 95.85%for carton trademark paper.

关键词

机器视觉/深度学习/YOLOv8/商标纸质量检测/相似度计算

Key words

machine vision/deep learning/YOLOv8/cigarette trademark paper quality inspection/similarity computation

分类

轻工纺织

引用本文复制引用

王律,陈仁宇,许彦旻,张俊,彭云发,詹映,曹昌清,斯勇,沈强,丁冉,林森,沈陟彦,薛辰,夏志骋..基于机器视觉与深度学习的烟用商标纸质量评价方法研究[J].中国造纸,2025,44(11):192-199,8.

基金项目

上海烟草集团有限责任公司科技项目(K2023-1-024P). (K2023-1-024P)

中国造纸

OA北大核心

0254-508X

访问量0
|
下载量0
段落导航相关论文