| 注册
首页|期刊导航|北京测绘|基于深度学习的规划道路数据智能化质检方法

基于深度学习的规划道路数据智能化质检方法

刘世凡 邢晨 董承玮 马金荣 金鹏 李晓燕

北京测绘2025,Vol.39Issue(11):1648-1653,6.
北京测绘2025,Vol.39Issue(11):1648-1653,6.DOI:10.19580/j.cnki.1007-3000.2025.11.014

基于深度学习的规划道路数据智能化质检方法

Intelligent quality inspection of planned road data based on deep learning

刘世凡 1邢晨 1董承玮 1马金荣 1金鹏 1李晓燕1

作者信息

  • 1. 北京市测绘设计研究院,北京 100038||城市空间信息工程北京市重点实验室,北京 100038
  • 折叠

摘要

Abstract

As an important outcome of engineering surveying,planned road data serves as the fundamental data foundation and guarantee for urban planning and approval.Due to the phased construction of the planned road database,many data results cannot be entered into the database in a timely and accurate manner,leading to inconsistencies between the database data and road design data.Furthermore,the large amount of planned road data makes manual quality inspection time-consuming,labor-intensive,and difficult to ensure accuracy.Therefore,this paper proposed an intelligent quality inspection scheme for planned road data based on deep learning technologies such as computer vision and large models.The intelligent quality inspection solution utilized the convolutional networks for biomedical image segmentation(U-Net)convolutional net-work model to detect table areas in road design images.It then combined expert knowledge to complete the analysis of the table structure.Finally,based on paddle optical character recognition(PaddleOCR),cell character recognition was per-formed to achieve the structuring and informatization of the table images.In addition,this paper innovatively introduced large model technologies to correct textual similarity errors,further improving recognition accuracy.Through implementa-tion and validation,the intelligent quality inspection solution saves more than 90%of inspection time,with a misidentifica-tion rate of only 0.27%,greatly enhancing both efficiency and accuracy.This demonstrates the effectiveness of this method in planned road quality inspection.

关键词

规划道路数据质检/计算机视觉/表格检测/大语言模型/字形相似性

Key words

planned road data quality inspection/computer vision/table detection/large language model/character similarity

分类

天文与地球科学

引用本文复制引用

刘世凡,邢晨,董承玮,马金荣,金鹏,李晓燕..基于深度学习的规划道路数据智能化质检方法[J].北京测绘,2025,39(11):1648-1653,6.

基金项目

科技部创新工作方法专项(2020IM020500) (2020IM020500)

北京测绘

1007-3000

访问量0
|
下载量0
段落导航相关论文