| 注册
首页|期刊导航|测绘科学技术学报|基于长短期记忆神经网络改进的PWV阈值降水预报方法研究

基于长短期记忆神经网络改进的PWV阈值降水预报方法研究

李锴 李黎 马乙翔 张明松 申文瑜

测绘科学技术学报2025,Vol.41Issue(4):362-371,10.
测绘科学技术学报2025,Vol.41Issue(4):362-371,10.DOI:10.3969/j.issn.1673-6338.2025.04.005

基于长短期记忆神经网络改进的PWV阈值降水预报方法研究

Method Research of PWV Threshold Rainfall Forecasting Based on the Improved LSTM Neural Networks

李锴 1李黎 1马乙翔 1张明松 1申文瑜1

作者信息

  • 1. 苏州科技大学地理科学与测绘工程学院,江苏苏州 215009||苏州科技大学北斗导航与环境感知研究中心,江苏苏州 215009
  • 折叠

摘要

Abstract

To address the issue of the interruption of the time series of precipitable water vapor(PWV)caused by the loss of ground-based global navigation satellite system(GNSS)observation data,which affects the continuity and accuracy of threshold precipitation forecasting,this paper constructed a PWV forecasting model using long short-term memory(LSTM)neural networks and sliding time windows.Subsequently,an improved threshold rainfall forecasting model was established as well based on the integration of actual precipitation data and LSTM-PWV.The results show that the mean bias between LSTM-PWV and GNSS-PWV is-0.1 mm,with a root mean square error(RMSE)of 1.2 mm,and the correlation coefficient is 0.99.In comparison to the GNSS-PWV,the annual average correct rate(CR)and probability of detection(POD)of the LSTM PWV threshold precipitation forecasting model have increased by 3.0%and 3.6%respectively,the false alarm rate and missed alarm rate have decreased by 4.0%and 3.6%respectively.Among them,the CR and POD at P047 station reach 95.2%and 78.2%respectively.Therefore,LSTM-PWV can not only be used to fill in the interrupted PWV time series due to missing GNSS obser-vation data,but also has more outstanding forecasting performance in threshold precipitation forecasting.

关键词

全球导航卫星系统/长短期记忆神经网络/大气可降水量/阈值/降水预报

Key words

GNSS/long short-term memory neural networks/PWV/threshold/precipitation forecasting

分类

测绘与仪器

引用本文复制引用

李锴,李黎,马乙翔,张明松,申文瑜..基于长短期记忆神经网络改进的PWV阈值降水预报方法研究[J].测绘科学技术学报,2025,41(4):362-371,10.

基金项目

国家自然科学基金项目(42204014) (42204014)

江苏省研究生实践创新项目(SJCX23_1718,SJCX24_1901) (SJCX23_1718,SJCX24_1901)

江苏省科技计划项目(BK20230660). (BK20230660)

测绘科学技术学报

1673-6338

访问量0
|
下载量0
段落导航相关论文