| 注册
首页|期刊导航|控制与信息技术|基于深度卷积神经网络的太阳能电池电致发光图像缺陷分类实验

基于深度卷积神经网络的太阳能电池电致发光图像缺陷分类实验

毕莹 张荣巧 常亚鑫 张拓

控制与信息技术Issue(5):24-30,7.
控制与信息技术Issue(5):24-30,7.DOI:10.13889/j.issn.2096-5427.2025.05.200

基于深度卷积神经网络的太阳能电池电致发光图像缺陷分类实验

Experimental Study on Classification of Solar Cell Defects from Electro-luminescence Imaging Based on Deep Convolutional Neural Networks

毕莹 1张荣巧 2常亚鑫 2张拓2

作者信息

  • 1. 郑州大学 电气与信息工程学院,河南 郑州 450001||智能农业动力装备全国重点实验室,河南 洛阳 471000
  • 2. 郑州大学 电气与信息工程学院,河南 郑州 450001
  • 折叠

摘要

Abstract

Electroluminescence(EL)imaging can sensitively reflect internal defects in solar cells,yet analyzing these images presents challenges due to high complexity,defect diversity,and large data volumes.To address the lack of criteria for model selection in industrial scenarios,this paper systematically evaluates the performance of five classic convolutional neural networks across three defect classification tasks,aiming to provide a theoretical foundation and methodological support for the intelligent detection and classification of cell defects.First,to mitigate severe class imbalance in the PVEL-AD datasets,stratified sampling was employed to construct 4-class and 7-class subsets,which,together with the original 2-class ELPV dataset,form a multi-level experimental framework.Second,using metrics such as balanced accuracy and F1-score,along with analyses of model runtime and convergence curves,a comprehensive evaluation was conducted on the performance of LeNet-5,AlexNet,VGG16,GoogLeNet,and ResNet18 in classification tasks.Experimental results demonstrated that ResNet18 significantly outperformed others in the 7-class task,achieving an F1-score of 93.70%,while its training time was only 47.5%that of VGG16,validating the superiority of residual structures in complex classification tasks.Through systematic experiments,this paper reveals the intrinsic relationship between model structures and classification performance,providing a decision-making basis for the efficient deployment of inspection systems for photovoltaic production lines.

关键词

太阳能电池/电致发光图像/缺陷分类/卷积神经网络/深度学习

Key words

solar cell/electroluminescence imaging/defect classification/convolutional neural network/deep learning

分类

信息技术与安全科学

引用本文复制引用

毕莹,张荣巧,常亚鑫,张拓..基于深度卷积神经网络的太阳能电池电致发光图像缺陷分类实验[J].控制与信息技术,2025,(5):24-30,7.

基金项目

国家自然科学基金面上项目(62376253) (62376253)

控制与信息技术

2096-5427

访问量0
|
下载量0
段落导航相关论文