| 注册
首页|期刊导航|电力信息与通信技术|可自适应聚类的户变识别深度模型研究

可自适应聚类的户变识别深度模型研究

郭祥葛 吕志宁 李毅 郑杰 史万福 王辉

电力信息与通信技术2025,Vol.23Issue(11):51-58,8.
电力信息与通信技术2025,Vol.23Issue(11):51-58,8.DOI:10.16543/j.2095-641x.electric.power.ict.2025.11.07

可自适应聚类的户变识别深度模型研究

Research on Adaptive Clustering-based Deep Model for Customer-transformer Relationship Identification

郭祥葛 1吕志宁 1李毅 1郑杰 1史万福 1王辉2

作者信息

  • 1. 深圳供电局有限公司,广东省 深圳市 518000
  • 2. 国网电力科学研究院有限公司,江苏省 南京市 210061
  • 折叠

摘要

Abstract

In low-voltage distribution systems,accurate identification of customer-transformer relationships is crucial for system operation and management.This paper proposes an automatic customer-transformer relationship identification algorithm based on a deep Gaussian mixture model,which leverages noise-labels and semi-supervised learning theory.By designing a clustering main network and a splitting and merging subnetwork structure,it fully utilizes existing label in-formation to achieve document establishment or verification in scenarios where the number of substations is unknown.In experiments on identifying customer-transformer` relationships based on actual user data,the proposed algorithm achieves an accuracy of up to 98.8%in profiling unlabeled users,demonstrating superior identification performance compared to traditional clustering and semi-supervised deep learning algorithms under various operating conditions.

关键词

混合高斯/户变关系识别/自适应聚类/低压配电系统

Key words

GMM/customer-transformer relationship identification/adaptive clustering/low-voltage distribution system

分类

电子信息工程

引用本文复制引用

郭祥葛,吕志宁,李毅,郑杰,史万福,王辉..可自适应聚类的户变识别深度模型研究[J].电力信息与通信技术,2025,23(11):51-58,8.

基金项目

中国南方电网公司科技项目"基于负荷特征传导的低压全景成图技术研究及应用"(090000KK52222164). (090000KK52222164)

电力信息与通信技术

1672-4844

访问量0
|
下载量0
段落导航相关论文