| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于循环神经网络辅助卡尔曼滤波法的动力响应重构方法

基于循环神经网络辅助卡尔曼滤波法的动力响应重构方法

孙利民 王艺晴 宋明明 夏烨

东南大学学报(自然科学版)2025,Vol.55Issue(6):1522-1529,8.
东南大学学报(自然科学版)2025,Vol.55Issue(6):1522-1529,8.DOI:10.3969/j.issn.1001-0505.2025.06.004

基于循环神经网络辅助卡尔曼滤波法的动力响应重构方法

Dynamical response reconstruction method based on Kalman filter aided by recurrent neural network

孙利民 1王艺晴 2宋明明 3夏烨1

作者信息

  • 1. 同济大学土木工程学院,上海 200092||同济大学土木工程防灾减灾全国重点实验室,上海 200092||上海期智研究院,上海 200092
  • 2. 同济大学土木工程学院,上海 200092
  • 3. 同济大学土木工程学院,上海 200092||同济大学土木工程防灾减灾全国重点实验室,上海 200092
  • 折叠

摘要

Abstract

To address the problem that the traditional Kalman filter(KF)algorithm requires assuming both measurement noise and process noise as Gaussian white noise and necessitate manual specification of variances when reconstructing unmeasured structural responses,a dynamical response reconstruction method based on KF assisted by recurrent neural network was proposed.By integrating a gated recurrent unit neural network block into the recursive framework of the KF algorithm,the Kalman gain was calculated from the measured data,achieving state identification and response reconstruction and avoiding dependence from Gaussian noise distribution assumptions and prior knowledge.Numerical simulations and experimental analyses were con-ducted using a shear frame structure model.The results demonstrate that the proposed method can effectively achieve real-time response reconstruction.The average reconstruction errors of the displacement and accelera-tion in model experiments are 15.21%and 7.81%,respectively,exhibiting higher accuracy and robustness of the proposed method than those of the traditional KF algorithm.

关键词

混合驱动建模/循环神经网络/卡尔曼滤波/响应重构

Key words

hybrid modeling/recurrent neural network/Kalman filter/response reconstruction

分类

土木建筑

引用本文复制引用

孙利民,王艺晴,宋明明,夏烨..基于循环神经网络辅助卡尔曼滤波法的动力响应重构方法[J].东南大学学报(自然科学版),2025,55(6):1522-1529,8.

基金项目

国家自然科学基金资助项目(52208199,52378187). (52208199,52378187)

东南大学学报(自然科学版)

OA北大核心

1001-0505

访问量0
|
下载量0
段落导航相关论文