| 注册
首页|期刊导航|电子科技大学学报|基于深度学习的分布式异构频谱感知

基于深度学习的分布式异构频谱感知

王颖舒 王斌 马缤遥 韦硕 张娟娟 李强

电子科技大学学报2025,Vol.54Issue(6):875-880,6.
电子科技大学学报2025,Vol.54Issue(6):875-880,6.DOI:10.12178/1001-0548.2024224

基于深度学习的分布式异构频谱感知

Deep learning-enabled distributed heterogeneous spectrum sensing

王颖舒 1王斌 2马缤遥 2韦硕 2张娟娟 1李强2

作者信息

  • 1. 贵州电网有限责任公司贵阳供电局,贵阳 550004
  • 2. 电子科技大学通信抗干扰全国重点实验室,成都 611731
  • 折叠

摘要

Abstract

With the rapid development of mobile internet,the number of mobile devices has sharply increased,leading to a shortage of spectrum resources.Dynamic spectrum allocation is an effective way to alleviate the shortage of spectrum resources,it relies on spectrum sensing,which detects unoccupied frequency bands.Traditional spectrum sensing methods only consider the scenarios of a single sensing node,which can only monitor a limited geographical scope.In order to monitor a large geographical range,it is necessary to consider the joint sensing architecture,namely,distributed spectrum sensing architecture.Due to the varying hardware accuracy and sensing environment,there exists heterogeneity among devices in a distributed system.To address this issue,this paper proposes a new distributed spectrum sensing architecture.The proposed architecture which consists of several sensing nodes,each equipped with a convolutional neural network(CNN)to identify whether the spectrum is occupied.The proposed distributed architecture requires shallow layers of different nodes to share weight parameters,while the parameters of the deep layers remain independent across nodes.The motivation stems from the fact that feature extraction in shallow layers is less affected by signal-to-noise ratio(SNR),thus sharing the weights of shallow layers among different nodes can improve sample efficiency.The parameters of the deep layers are more significantly affected by the SNR.To enhance the robustness of the perceptual system to the local SNR,each node should train its deep layers using only its own training samples.Simulation shows that the proposed method can significantly improve the detection accuracy of heterogeneous sensing networks.

关键词

卷积神经网络/分布式感知网络/异构性/频谱感知

Key words

convolutional neural network/distributed sensing network/heterogeneity/spectrum sensing

分类

电子信息工程

引用本文复制引用

王颖舒,王斌,马缤遥,韦硕,张娟娟,李强..基于深度学习的分布式异构频谱感知[J].电子科技大学学报,2025,54(6):875-880,6.

基金项目

国家级基金项目(G022023KP01602) (G022023KP01602)

电子科技大学学报

OA北大核心

1001-0548

访问量0
|
下载量0
段落导航相关论文