| 注册
首页|期刊导航|分布式能源|计及新能源无功不确定性的虚拟电厂无功优化

计及新能源无功不确定性的虚拟电厂无功优化

刘翊枫 陈萌 陈晶品 何忠时 刘健 陶泽飞

分布式能源2025,Vol.10Issue(5):72-81,10.
分布式能源2025,Vol.10Issue(5):72-81,10.DOI:10.16513/j.2096-2185.DE.25100093

计及新能源无功不确定性的虚拟电厂无功优化

Reactive Power Optimization of Virtual Power Plants Considering Reactive Power Uncertainty of New Energy

刘翊枫 1陈萌 1陈晶品 1何忠时 1刘健 2陶泽飞3

作者信息

  • 1. 湖北电力交易中心,湖北省武汉市 430040
  • 2. 中国能源研究会,北京市海淀区 100194||北京科东电力控制系统有限责任公司,北京市海淀区 100194
  • 3. 中国能源研究会,北京市海淀区 100194||贵州大学电气工程学院,贵州省贵阳市 550025
  • 折叠

摘要

Abstract

With the rapid development of new energy generation technology,renewable energy sources such as wind energy and photovoltaic not only serve as important active power sources,but their reactive power regulation potentials are also receiving increasing attention.In this paper,an innovative optimization strategy based on the improved Genghis Khan shark optimization(GKSO)algorithm is proposed to address the shortage of virtual power plant(VPP)reactive power sources and the model solving difficulties under high percentage of new energy access.First,a reactive power co-regulation model containing multiple distributed power sources such as wind power,photovoltaic,energy storage and gas turbine is constructed,and the key influencing factors of the uncertainty of new energy reactive power output are revealed through parameter sensitivity analysis.In order to accurately characterize the uncertainty,Latin hypercube sampling(LHS)combined with the scenario generation and reduction technique of Kantorovich distance is innovatively adopted to establish a typical set of scenarios of wind and solar power output.On this basis,a multi-objective optimization model of VPP considering the uncertainty of new energy reactive power is established and efficiently solved using the improved GKSO algorithm.The simulation results show that compared with the particle swarm optimization(PSO)algorithm and seagull optimization algorithm(SOA),the optimized GKSO algorithm has a significant advantage in solving the VPP reactive power optimization problem,and it is necessary to take the new energy reactive power uncertainty into account in order to reduce the operational risk for large new energy stations with large installed capacity.

关键词

新能源/虚拟电厂(VPP)/无功优化/成吉思汗鲨鱼优化(GKSO)算法/不确定性

Key words

new energy/virtual power plant(VPP)/reactive power optimization/Genghis Khan shark optimizer(GKSO)algorithm/uncertainty

分类

能源与动力

引用本文复制引用

刘翊枫,陈萌,陈晶品,何忠时,刘健,陶泽飞..计及新能源无功不确定性的虚拟电厂无功优化[J].分布式能源,2025,10(5):72-81,10.

基金项目

贵州省科技计划项目(黔科合支撑[2021]一般409)This work is supported by Science and Technology Program of Guizhou Province(Qiankehe Support[2021]General 409) (黔科合支撑[2021]一般409)

分布式能源

2096-2185

访问量1
|
下载量0
段落导航相关论文