| 注册
首页|期刊导航|高电压技术|基于温度热模型与数据融合驱动的海上风力发电机故障早期预警

基于温度热模型与数据融合驱动的海上风力发电机故障早期预警

魏书荣 周海林 符杨 黄玲玲 葛晓琳

高电压技术2025,Vol.51Issue(10):4945-4956,中插1-中插2,14.
高电压技术2025,Vol.51Issue(10):4945-4956,中插1-中插2,14.DOI:10.13336/j.1003-6520.hve.20241884

基于温度热模型与数据融合驱动的海上风力发电机故障早期预警

Early Warning of Offshore Wind Turbine Failures Based on Temperature-thermal Modeling and Data Fusion Drive

魏书荣 1周海林 1符杨 1黄玲玲 1葛晓琳1

作者信息

  • 1. 海上风电技术教育部工程研究中心(上海电力大学),上海 200090
  • 折叠

摘要

Abstract

After offshore wind power enters the parity era,there is a more urgent need for accurate fault prediction to improve the reliable operation of wind turbines and reduce power generation losses;however,relying only on physical or data models for wind turbine early fault warning often faces the problem of model accuracy.Based on the idea of mod-el-data fusion modeling,a fusion-driven offshore doubly-fed wind turbine early-fault-warning method based on equivalent thermal network model and Stacking integration algorithm is proposed.Firstly,the equivalent thermal network method is used to construct the wind turbine thermal balance matrix,the matrix is solved to obtain the steady state tem-perature values of each node,and the first-order RC thermal network model is adopted to describe the temperature trend over time.Then,the stator winding temperature and other related variables calculated by the thermal model are used as input features of the Stacking integration algorithm to correct the stator winding temperature values.Finally,the K-S(Kolmogorov-Smirnov)test principle is utilized to determine the adaptive threshold value,and early fault warning is car-ried out according to the trend of the residuals.The SCADA data of a domestic offshore wind farm are analyzed as an example to verify the effectiveness of the fusion model.The early warning method for offshore wind turbine faults based on the temperature-heat model driven with data fusion is generalizable and provides a technical support for the healthy and sustainable development of offshore wind power in the era of parity.

关键词

海上风电/故障预警/模型-数据融合/Stacking集成算法

Key words

offshore wind power/fault warning/model-data fusion/Stacking integration algorithm

引用本文复制引用

魏书荣,周海林,符杨,黄玲玲,葛晓琳..基于温度热模型与数据融合驱动的海上风力发电机故障早期预警[J].高电压技术,2025,51(10):4945-4956,中插1-中插2,14.

基金项目

国家自然科学基金(52377063) (52377063)

上海市教委自然科学重大项目(2021-01-07-00-07-E00122) (2021-01-07-00-07-E00122)

上海科技创新行动计划(22dz1206100) (22dz1206100)

上海高校特聘教授(东方学者)(TP2020066).Project supported by National Natural Science Foundation of China(52377063),Major Natural Science Project of Shanghai Municipal Education Commission(2021-01-07-00-07-E00122),Shanghai Science and Technology Innovation Action Plan(22dz1206100),Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(TP2020066). (东方学者)

高电压技术

OA北大核心

1003-6520

访问量0
|
下载量0
段落导航相关论文