| 注册
首页|期刊导航|华中科技大学学报(自然科学版)|基于全局特征增强的新闻推荐模型

基于全局特征增强的新闻推荐模型

刘莉 王徽 杨亮 李龙杰 马笠恭

华中科技大学学报(自然科学版)2025,Vol.53Issue(10):29-35,7.
华中科技大学学报(自然科学版)2025,Vol.53Issue(10):29-35,7.DOI:10.13245/j.hust.251094

基于全局特征增强的新闻推荐模型

Global feature enhancement for news recommendation model

刘莉 1王徽 1杨亮 1李龙杰 1马笠恭2

作者信息

  • 1. 兰州大学信息科学与工程学院,甘肃 兰州 730000
  • 2. 兰州市公安局,甘肃 兰州 730000
  • 折叠

摘要

Abstract

To address the problem that personalized news recommendation systems in recent years primarily relied on users' own browsing history,lacked a global perspective,and failed to fully consider users' potential interests and complex behavioral patterns beyond semantic information,a news recommendation model called GREEN(global feature enhancement for news recommendation)was proposed.This model could utilize other users' browsing histories to learn global news features and combine them with users' local news representations to enhance the model's personalized recommendation capability.A global news encoder was constructed,which used gated graph neural networks to learn two types of global news representations and fused various news features through a historical news aggregator.Similarly,this approach was extended to a global candidate news encoder that utilized a global entity network and candidate news aggregator to enhance candidate news features.Through evaluation on the public news dataset MIND-small,it is confirmed that the proposed model outperforms existing methods.

关键词

新闻推荐模型/特征增强/全局新闻特征/图神经网络/注意力机制

Key words

news recommendation model/feature enhancement/global news features/graph neural networks/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

刘莉,王徽,杨亮,李龙杰,马笠恭..基于全局特征增强的新闻推荐模型[J].华中科技大学学报(自然科学版),2025,53(10):29-35,7.

基金项目

甘肃省科技计划资助项目(23YFGA0005,21ZD8RA008). (23YFGA0005,21ZD8RA008)

华中科技大学学报(自然科学版)

OA北大核心

1671-4512

访问量0
|
下载量0
段落导航相关论文