| 注册
首页|期刊导航|吉林大学学报(理学版)|基于改进ResNet50模型的体育图像分类

基于改进ResNet50模型的体育图像分类

王立宁 蔡旭东

吉林大学学报(理学版)2025,Vol.63Issue(6):1655-1662,8.
吉林大学学报(理学版)2025,Vol.63Issue(6):1655-1662,8.DOI:10.13413/j.cnki.jdxblxb.2024514

基于改进ResNet50模型的体育图像分类

Sports Image Classification Based on Improved ResNet50 Model

王立宁 1蔡旭东2

作者信息

  • 1. 长春师范大学体育学院,长春 130032
  • 2. 长春师范大学计算机科学与技术学院,长春 130032
  • 折叠

摘要

Abstract

Aiming at the problem of complex image content,diverse action postures,and significant background interference in the task of sports image classification,we proposed a sports image classification algorithm based on an improved ResNet50 model.Firstly,a squeeze-and-excitation module was embedded within the residual structure to adaptively enhance key channel features and improve feature expression capability.Secondly,on this basis,a feature pyramid network was introduced to achieve effective fusion of multi-scale features,and enhance the model's perception ability of objects at different scales.Finally,classification prediction was performed through global average pooling and fully connected layers.Experimental results show that the classification accuracy of the proposed method is about 5%higher than that of the conventional ResNet50 model,fully demonstrating its robustness and superiority in handling complex actions and diverse backgrounds.The experimental results not only validate the effectiveness and feasibility of the proposed method,but also provide more reliable technical support and practical reference for applications in sports video analysis,intelligent sports training and other related fields.

关键词

深度残差网络/体育图像分类/ResNet50模型/注意力机制/多尺度特征融合

Key words

deep residual network/sports image classification/ResNet50 model/attention mechanism/multi-scale feature fusion

分类

计算机与自动化

引用本文复制引用

王立宁,蔡旭东..基于改进ResNet50模型的体育图像分类[J].吉林大学学报(理学版),2025,63(6):1655-1662,8.

基金项目

吉林省教育科学规划"十四五"课题项目(批准号:GH24045). (批准号:GH24045)

吉林大学学报(理学版)

OA北大核心

1671-5489

访问量0
|
下载量0
段落导航相关论文