| 注册
首页|期刊导航|计算机工程|GRD:基于GNN和扩散模型的多变量时序数据异常检测算法

GRD:基于GNN和扩散模型的多变量时序数据异常检测算法

邸钦渤 陈劭力 时良仁

计算机工程2025,Vol.51Issue(11):35-44,10.
计算机工程2025,Vol.51Issue(11):35-44,10.DOI:10.19678/j.issn.1000-3428.0069780

GRD:基于GNN和扩散模型的多变量时序数据异常检测算法

GRD:Anomaly Detection Algorithm for Multivariate Time Series Data Based on GNN and Diffusion Model

邸钦渤 1陈劭力 2时良仁1

作者信息

  • 1. 上海交通大学电子信息与电气工程学院,上海 200240
  • 2. 华讯网络系统有限公司,上海 200127
  • 折叠

摘要

Abstract

As multivariate time series data become increasingly prevalent across various industries,anomaly detection methods that can ensure the stable operation and security of systems have become crucial.Owing to the inherent complexity and dynamic nature of multivariate time series data,higher demands are placed on anomaly detection algorithms.To address the inefficiencies of existing anomaly detection methods in processing high-dimensional data with complex variable relations,this study proposes an anomaly detection algorithm for multivariate time series data,based on Graph Neural Networks(GNNs)and a diffusion model,named GRD.By leveraging node embedding and graph structure learning,GRD algorithm proficiently captures the relations between variables and refines features through a Gated Recurrent Unit(GRU)and a Denoising Diffusion Probabilistic Model(DDPM),thereby facilitating precise anomaly detection.Traditional assessment methods often employ a Point-Adjustment(PA)protocol that involves pre-scoring,substantially overestimating an algorithm's capability.To reflect model performance realistically,this work adopts a new evaluation protocol along with new metrics.The GRD algorithm demonstrates F1@k scores of 0.741 4,0.801 7,and 0.767 1 on three public datasets.These results indicate that GRD algorithm consistently outperforms existing methods,with notable advantages in the processing of high-dimensional data,thereby underscoring its practicality and robustness in real-world anomaly detection applications.

关键词

多变量时序数据/异常检测/图神经网络/扩散模型/评估协议

Key words

multivariate time series data/anomaly detection/Graph Neural Network(GNN)/diffusion model/evaluation protocol

分类

信息技术与安全科学

引用本文复制引用

邸钦渤,陈劭力,时良仁..GRD:基于GNN和扩散模型的多变量时序数据异常检测算法[J].计算机工程,2025,51(11):35-44,10.

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文