| 注册
首页|期刊导航|计算机工程|基于密集协同注意力的多模态情感分析

基于密集协同注意力的多模态情感分析

周世向 于凯

计算机工程2025,Vol.51Issue(11):144-151,8.
计算机工程2025,Vol.51Issue(11):144-151,8.DOI:10.19678/j.issn.1000-3428.0069721

基于密集协同注意力的多模态情感分析

Multimodal Sentiment Analysis Based on Dense Co-Attention

周世向 1于凯2

作者信息

  • 1. 新疆大学计算机科学与技术学院,新疆乌鲁木齐 830017
  • 2. 新疆大学计算机科学与技术学院,新疆乌鲁木齐 830017||新疆财经大学公共管理学院,新疆乌鲁木齐 830012
  • 折叠

摘要

Abstract

With the development of social networks,people are increasingly expressing their emotions through multimodal data,such as audio,text,and video.Traditional sentiment analysis methods struggle to process emotional expressions in short videos effectively,and existing multimodal sentiment analysis techniques face issues such as low accuracy and insufficient interaction between modes.To address these problems,this study proposes a Multimodal Sentiment Analysis method based on Dense Co-Attention(DCA-MSA).First,it utilizes the pre-trained Bidirectional Encoder Representations from Transformers(BERT)model,OpenFace 2.0 model,and COVAREP tool to extract features from text,video,and audio,respectively.It then employs a Bidirectional Long Short-Term Memory(BiLSTM)network to model the temporal correlations within different features separately.Finally,it integrates different features through a dense co-attention mechanism.The experimental results show that the model proposed in this paper is competitive in multimodal sentiment analysis tasks compared to some baseline models:on the CMU-MOSEI dataset,the highest increase in binary classification accuracy is 3.7 percentage points,and the highest increase in F1 value is 3.1 percentage points;on the CH-SIMS dataset,the highest increase in binary classification accuracy is 4.1 percentage points,the highest increase in three-classification accuracy is 2.8 percentage points,and the highest increase in F1 value is 3.9 percentage points.

关键词

多模态/情感分析/模态交互/密集协同注意力/特征融合

Key words

multimodal/sentiment analysis/modal interaction/dense co-attention/feature fusion

分类

计算机与自动化

引用本文复制引用

周世向,于凯..基于密集协同注意力的多模态情感分析[J].计算机工程,2025,51(11):144-151,8.

基金项目

新疆维吾尔自治区社会科学基金(21BTQ162) (21BTQ162)

新疆维吾尔自治区重点研发计划项目(2023B01032). (2023B01032)

计算机工程

OA北大核心

1000-3428

访问量1
|
下载量0
段落导航相关论文