| 注册
首页|期刊导航|计算机工程与应用|基于帝国竞争演化与深度强化学习的背包问题优化算法

基于帝国竞争演化与深度强化学习的背包问题优化算法

李斌 潘智成

计算机工程与应用2025,Vol.61Issue(22):92-113,22.
计算机工程与应用2025,Vol.61Issue(22):92-113,22.DOI:10.3778/j.issn.1002-8331.2411-0102

基于帝国竞争演化与深度强化学习的背包问题优化算法

Knapsack Problem Optimization Algorithm Based on Imperialist Competitive Evolution and Deep Reinforcement Learning

李斌 1潘智成2

作者信息

  • 1. 福建理工大学 机械与汽车工程学院,福州 350118||福建理工大学 福建省大数据挖掘与应用技术重点实验室,福州 350118
  • 2. 福建理工大学 福建省大数据挖掘与应用技术重点实验室,福州 350118||福建理工大学 计算机科学与数学学院,福州 350118
  • 折叠

摘要

Abstract

The 0-1 knapsack problem(KP)is a classical NP-hard problem with wide applications in the field of combina-torial optimization.To address the limitations of the original imperialist competition algorithm(ICA),which is prone to fall into local optimality and lack of global exploration ability in high-dimensional complex problems,an optimization algorithm that combines the improved imperialist competition algorithm incorporating deep reinforcement learning with a multi-head attention mechanism(IICA-DRL)is proposed.The algorithm enhances the local search capability and popu-lation diversity by introducing the insertion cross assimilation operator,the two-bit mutation mechanism and the assis-tance mechanism,and optimizes the high quality solutions of IICA by using the deep reinforcement learning model with the multi-head attention mechanism,which further enhances the quality of the individual solutions and the global explora-tion capability of the algorithm.Performance evaluation is performed on 62 0-1 KP instances in 4 test sets,and the results show that 54 of the instances solved reach the optimal solution.The performance is compared with 20 meta-heuristic algo-rithms.The experimental results show that the IICA-DRL algorithm has strong stability and effectiveness,preliminarily verifies the feasibility of the improved strategy,and provides an effective algorithmic design scheme for ICA to solve the knapsack problem.

关键词

0-1背包问题/帝国竞争算法/同化算子/多样性机制/多头注意力机制/深度强化学习

Key words

0-1 knapsack problem/imperialist competitive algorithm/assimilation operator/diversity mechanism/multi-head attention mechanism/deep reinforcement learning

分类

计算机与自动化

引用本文复制引用

李斌,潘智成..基于帝国竞争演化与深度强化学习的背包问题优化算法[J].计算机工程与应用,2025,61(22):92-113,22.

基金项目

教育部人文社会科学研究规划基金(19YJA630031). (19YJA630031)

计算机工程与应用

OA北大核心

1002-8331

访问量1
|
下载量0
段落导航相关论文