| 注册
首页|期刊导航|计算机工程与应用|多自监督学习任务结合图神经网络的EEG情感识别

多自监督学习任务结合图神经网络的EEG情感识别

陈景霞 李小池 王倩 张鹏伟

计算机工程与应用2025,Vol.61Issue(22):205-214,10.
计算机工程与应用2025,Vol.61Issue(22):205-214,10.DOI:10.3778/j.issn.1002-8331.2501-0094

多自监督学习任务结合图神经网络的EEG情感识别

EEG Emotion Recognition with Multi-Self-Supervised Learning Tasks Combined with Graph Neural Networks

陈景霞 1李小池 1王倩 1张鹏伟2

作者信息

  • 1. 陕西科技大学 电子信息与人工智能学院,西安 710021
  • 2. 陕西科技大学 前沿科学与技术转移研究院,西安 710021
  • 折叠

摘要

Abstract

To address the issues of the insufficient model generalization due to label scarcity and the overfitting tendency of single-task self-supervised learning in electroencephalogram(EEG)emotion recognition,this paper proposes a graph neural network model based on EEG frequency-domain features,within a self-supervised multi-task learning framework to enhance representation learning and emotion recognition.Differential entropy features are extracted from EEG data and represented as graph structures.Multi-task learning is performed through four self-supervised tasks:channel masking,fre-quency masking,spatial jigsaw,and frequency jigsaw.A Chebyshev graph neural network is utilized to extract deep-level features,where the channel masking and frequency masking tasks compute losses via a reconstruction module,while the spatial jigsaw and frequency jigsaw tasks compute losses via a classification module.After training,the feature extractor parameters are frozen and applied to downstream emotion recognition tasks.Experimental results on the SEED and DEAP datasets demonstrate that the subject-dependent emotion classification accuracy reaches 89.87%(three-class)on the SEED dataset,while on the DEAP dataset,the binary classification accuracies for the arousal and valence dimensions are 88.03%and 89.70%,respectively.For subject-independent scenarios,the accuracies are 72.03%on the SEED dataset and 65.38%and 61.29%on the DEAP dataset.These results indicate that the proposed method effectively improves classification performance,mitigates overfitting,and outperforms existing approaches.

关键词

脑电信号/情感识别/图神经网络/自监督学习/多任务

Key words

electroencephalogram/emotion recognition/graph neural network/self-supervised learning/multi-task

分类

计算机与自动化

引用本文复制引用

陈景霞,李小池,王倩,张鹏伟..多自监督学习任务结合图神经网络的EEG情感识别[J].计算机工程与应用,2025,61(22):205-214,10.

基金项目

国家自然科学基金(61806118) (61806118)

陕西科技大学博士科研启动基金(2020BJ-30). (2020BJ-30)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量2
段落导航相关论文