| 注册
首页|期刊导航|现代制造工程|基于动态时空子图卷积网络的电机轴承故障声纹识别方法

基于动态时空子图卷积网络的电机轴承故障声纹识别方法

熊丽萍 吕辉 周建安

现代制造工程Issue(11):124-135,12.
现代制造工程Issue(11):124-135,12.DOI:10.16731/j.cnki.1671-3133.2025.11.017

基于动态时空子图卷积网络的电机轴承故障声纹识别方法

Dynamic spatial-temporal subgraph convolutional network and its application in voiceprint-based asynchronous motor bearing fault diagnosis method

熊丽萍 1吕辉 2周建安3

作者信息

  • 1. 河南工业和信息化职业学院,焦作 454000
  • 2. 河南理工大学电气工程与自动化学院,焦作 454000||河南理工大学光电传感与智能测控河南省工程实验室,焦作 454000
  • 3. 比亚迪汽车工业有限公司汽车工程研究院,深圳 518118
  • 折叠

摘要

Abstract

;A Dynamic Spatial-Temporal Sub Graph Convolutional Network(DSTSGCN)was proposed to address limitations in ex-isting voiceprint-based fault diagnosis methods,including poor adaptability and insufficient dynamic graph construction capabilities caused by difficulties in capturing spatial-temporal coupling relationships.Firstly,a edge-level dynamic graph convo-lutional network was designed,where spatial correlations between voiceprint signals were adaptively learned through optimization of edge weights,and the sensitivity of traditional k-nearest neighbor graphs to hyperparameters was effectively mitigated.Secondly,dilated causal convolution was integrated with cross self-attention mechanisms,and a temporal feature fusion module was construc-ted to capture critical long-term dependency information within signals,thereby highlighting temporal relationships between signals.Finally,discriminative representations of fault features were enhanced through multi-signal spatial-temporal information fusion,enabling graph-level fault diagnosis.Experimental validation was conducted on a three-phase asynchronous motor test plat-form.Results demonstrated that the proposed DSTSGCN achieved 99.72%accuracy with only one training sample,outperforming seven comparative voiceprint-based diagnostic methods.

关键词

电机轴承/声纹识别/故障诊断/图卷积网络

Key words

motor bearing/voiceprint recognition/fault diagnosis/graph convolutional network

分类

动力与电气工程

引用本文复制引用

熊丽萍,吕辉,周建安..基于动态时空子图卷积网络的电机轴承故障声纹识别方法[J].现代制造工程,2025,(11):124-135,12.

基金项目

河南省科技攻关项目(232102210171) (232102210171)

河南省高等学校重点科研计划项目(24B120002) (24B120002)

现代制造工程

OA北大核心

1671-3133

访问量0
|
下载量0
段落导航相关论文