| 注册
首页|期刊导航|解放军医学院学报|基于RTMPose和PatchTST的帕金森病和特发性震颤的视频鉴别诊断研究

基于RTMPose和PatchTST的帕金森病和特发性震颤的视频鉴别诊断研究

彭宇盟 于金泽 潘隆盛 曾梓敬 袁田 时颖 张政波

解放军医学院学报2025,Vol.46Issue(7):638-645,8.
解放军医学院学报2025,Vol.46Issue(7):638-645,8.DOI:10.12435/j.issn.2095-5227.25010501

基于RTMPose和PatchTST的帕金森病和特发性震颤的视频鉴别诊断研究

Video-based differential diagnosis of Parkinson's disease and essential tremor using RTMPose and PatchTST

彭宇盟 1于金泽 2潘隆盛 3曾梓敬 4袁田 5时颖 5张政波6

作者信息

  • 1. 解放军总医院医学创新研究部,北京 100853||解放军医学院,北京 100853||联勤保障部队第923医院神经内科,广西 南宁 530021
  • 2. 北京航空航天大学计算机学院,北京 100083
  • 3. 解放军总医院第一医学中心神经外科医学部,北京 100853
  • 4. 解放军总医院第一医学中心神经外科医学部,北京 100853||解放军医学院,北京 100853
  • 5. 解放军总医院医学创新研究部,北京 100853||解放军医学院,北京 100853
  • 6. 解放军总医院医学创新研究部,北京 100853
  • 折叠

摘要

Abstract

Background Parkinson's disease(PD)and essential tremor(ET)share overlapping clinical manifestations.Current diagnostic approaches rely on subjective rating scales by neurologists,which are time-consuming and limited inter-rater consistency.Objective To develop an intelligent classification model based on video analysis,integrating deep learning to achieve efficient and automated differentiation between PD and ET,thereby offering a novel approach for non-invasive diagnosis.Methods A total of 14 PD and 63 ET patients from the Outpatient Department of PLA General Hospital(Nov.2021 to Jan.2024)were enrolled.A dataset comprising 1 136 video clips was collected during the performance of three standardized upper limb motor tasks:finger-to-nose,hand pronation-supination,and fist opening-closing.Using the RTMPose model within the MMPose framework,keypoint coordinates of the wrist and fingers were extracted.Kinematic features such as displacement,velocity,and acceleration were computed to construct a dataset of spatiotemporal trajectories and statistical descriptors.A Transformer-based PatchTST model was developed,in which temporal sequences were segmented into patches and processed via global attention mechanisms.Model performance was compared against logistic regression,XGBoost,random forest,support vector machine,Informer,and long short-term memory(LSTM)networks.Results The PatchTST model achieved the best average performance when combining keypoint coordinates with kinematic features.The highest accuracy was observed in the finger-to-nose task(AUC=0.957),with an overall average AUC of 0.897 among all three tasks.Among the 21 model-feature combinations,the LSTM model using only kinematic features performed the worst,with an average AUC of 0.691.Conclusion The video-based intelligent differential diagnosis method for PD and ET,leveraging human pose estimation and deep learning technologies,enables high-precision and high-efficiency remote diagnosis without physical contact,providing reference for early diagnosis and management of movement disorders.

关键词

帕金森病/特发性震颤/视频诊断/人体姿态估计/深度学习/Transformer模型/远程医疗

Key words

Parkinson's disease/essential tremor/video-based diagnosis/human pose estimation/deep learning/transformer model/telemedicine

分类

医药卫生

引用本文复制引用

彭宇盟,于金泽,潘隆盛,曾梓敬,袁田,时颖,张政波..基于RTMPose和PatchTST的帕金森病和特发性震颤的视频鉴别诊断研究[J].解放军医学院学报,2025,46(7):638-645,8.

基金项目

北京市自然科学基金资助项目(7252299) (7252299)

解放军医学院学报

2095-5227

访问量0
|
下载量0
段落导航相关论文