| 注册
首页|期刊导航|解放军医学院学报|机器学习在运动性疲劳评估中的应用

机器学习在运动性疲劳评估中的应用

王鹏举 李梦伟 彭程 赵双琳 张明月 王翔 曹江北 罗云根

解放军医学院学报2025,Vol.46Issue(7):723-728,6.
解放军医学院学报2025,Vol.46Issue(7):723-728,6.DOI:10.12435/j.issn.2095-5227.25020601

机器学习在运动性疲劳评估中的应用

Research advances in machine learning in exercise-induced fatigue evaluation and application

王鹏举 1李梦伟 2彭程 2赵双琳 3张明月 2王翔 3曹江北 4罗云根1

作者信息

  • 1. 解放军联勤保障部队北戴河康复疗养中心,河北 秦皇岛 066100||解放军医学院,北京 100853
  • 2. 解放军联勤保障部队北戴河康复疗养中心,河北 秦皇岛 066100
  • 3. 解放军陆军第七十二集团军医院医学工程科,浙江 湖州 313000
  • 4. 解放军总医院第一医学中心麻醉科,北京 100853
  • 折叠

摘要

Abstract

Exercise-induced fatigue is a physiological state in which the body is temporarily unable to sustain a certain level of exercise intensity or performance during or after physical activity.An accurate evaluation of exercise-induced fatigue is essential for preventing sports injuries,enhancing athletic performance,and mitigating safety incidents.Machine learning(ML)has effectively improved the accuracy and automation of fatigue evaluation by processing and modeling complex multi-dimensional data.This article provides a brief overview of the evaluation methods for exercise-induced fatigue,with a particular focus on reviewing the role and application directions of ML in the assessment of exercise-induced fatigue,aiming to offer references for optimizing fatigue management and enhancing athletic performance.

关键词

运动性疲劳/机器学习/人工智能/监测/诊断/预防

Key words

exercise-induced fatigue/machine learning/artificial intelligence/monitor/diagnosis/prevention

分类

医药卫生

引用本文复制引用

王鹏举,李梦伟,彭程,赵双琳,张明月,王翔,曹江北,罗云根..机器学习在运动性疲劳评估中的应用[J].解放军医学院学报,2025,46(7):723-728,6.

基金项目

省部级课题 ()

解放军医学院学报

2095-5227

访问量0
|
下载量0
段落导航相关论文