| 注册
首页|期刊导航|可再生能源|基于特征优选的DBO-CNN-BiLSTM-AM短期光伏发电预测

基于特征优选的DBO-CNN-BiLSTM-AM短期光伏发电预测

杜立 李振华 李振兴 魏伟 徐艳春

可再生能源2025,Vol.43Issue(11):1458-1468,11.
可再生能源2025,Vol.43Issue(11):1458-1468,11.

基于特征优选的DBO-CNN-BiLSTM-AM短期光伏发电预测

DBO-CNN-BiLSTM-AM short-term photovoltaic power generation prediction based on feature optimization

杜立 1李振华 1李振兴 2魏伟 3徐艳春2

作者信息

  • 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002||智慧能源技术湖北省工程研究中心,湖北 宜昌 443002
  • 2. 三峡大学 电气与新能源学院,湖北 宜昌 443002
  • 3. 国网湖北省电力有限公司营销服务中心 计量中心,湖北 武汉 430080
  • 折叠

摘要

Abstract

With the gradual increase of photovoltaic installed capacity,the stable and safe operation of power system is facing challenges.By improving the prediction accuracy of photovoltaic power generation,the operation stability and safety of power system can be improved.Therefore,this paper proposes a DBO-CNN-BiLSTM-AM short-term photovoltaic power generation prediction method based on feature optimization.Firstly,Variance Inflation Factor(VIF)and Extremely Randomized Trees(ERT)are used to calculate and select the features with low VIF value and high importance score as input.Secondly,a CNN-BiLSTM-AM prediction model is established by using Convolutional Neural Network(CNN),Bi-directional Long Short Term Memory(BiLSTM)and Attention Mechanism(AM)with dynamic adjustment ability of feature weights.Finally,the Dung Beetle Optimization algorithm(DBO)is used to perform global optimization of hyperparameters to maximize the prediction accuracy.The experimental results show that the prediction accuracy of the short-term photovoltaic power prediction method proposed in this paper is significantly higher than that of the traditional method,which provides a good basis for optimizing power dis-patching and stable operation of power system.

关键词

光伏发电/双向长短期神经网络/注意力机制/蜣螂优化算法

Key words

photovoltaic power generation/BiLSTM/attention mechanism/dung beetle optimization algorithm

分类

能源与动力

引用本文复制引用

杜立,李振华,李振兴,魏伟,徐艳春..基于特征优选的DBO-CNN-BiLSTM-AM短期光伏发电预测[J].可再生能源,2025,43(11):1458-1468,11.

基金项目

国家自然科学基金(52277012) (52277012)

武汉强磁场学科交叉基金资助(WHMFC202202). (WHMFC202202)

可再生能源

OA北大核心

1671-5292

访问量0
|
下载量0
段落导航相关论文