| 注册
首页|期刊导航|南京航空航天大学学报(英文版)|基于谱段图卷积与注意力增强卷积联合网络的高光谱图像分类方法

基于谱段图卷积与注意力增强卷积联合网络的高光谱图像分类方法

徐陈捷 李丹 孔繁锵

南京航空航天大学学报(英文版)2025,Vol.42Issue(z1):102-120,19.
南京航空航天大学学报(英文版)2025,Vol.42Issue(z1):102-120,19.DOI:10.16356/j.1005-1120.2025.S.009

基于谱段图卷积与注意力增强卷积联合网络的高光谱图像分类方法

A Hyperspectral Image Classification Based on Spectral Band Graph Convolutional and Attention-Enhanced CNN Joint Network

徐陈捷 1李丹 1孔繁锵1

作者信息

  • 1. 南京航空航天大学航天学院,南京 211106,中国
  • 折叠

摘要

Abstract

Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data.

关键词

高光谱图像分类/谱段图卷积/注意力增强卷积/动态注意力/特征提取/特征融合

Key words

hyperspectral classification/spectral band graph convolutional network/attention-enhance convolutional network/dynamic attention/feature extraction/feature fusion

分类

信息技术与安全科学

引用本文复制引用

徐陈捷,李丹,孔繁锵..基于谱段图卷积与注意力增强卷积联合网络的高光谱图像分类方法[J].南京航空航天大学学报(英文版),2025,42(z1):102-120,19.

基金项目

This work was supported in part by the National Natural Science Foundations of China(No.61801214),and the Postgraduate Research Practice Innova-tion Program of NUAA(No.xcxjh20231504). (No.61801214)

南京航空航天大学学报(英文版)

1005-1120

访问量0
|
下载量0
段落导航相关论文