| 注册
首页|期刊导航|山东农业科学|面向边缘设备的改进YOLOv7-tiny线虫检测模型

面向边缘设备的改进YOLOv7-tiny线虫检测模型

李耀东 侯文进 侯华鑫 王秀丽 王东 曲建平 周波 刘璋

山东农业科学2025,Vol.57Issue(10):149-157,9.
山东农业科学2025,Vol.57Issue(10):149-157,9.DOI:10.14083/j.issn.1001-4942.2025.10.019

面向边缘设备的改进YOLOv7-tiny线虫检测模型

Improved YOLOv7-tiny Nematode Detection Model for Edge Devices

李耀东 1侯文进 1侯华鑫 1王秀丽 1王东 2曲建平 3周波 4刘璋3

作者信息

  • 1. 山东农业大学信息科学与工程学院,山东泰安 271018
  • 2. 西北农林科技大学农学院,陕西杨凌 712100
  • 3. 山东农业大学生命科学学院,山东泰安 271018
  • 4. 山东农业大学生命科学学院,山东泰安 271018||山东未来生物科技有限公司,山东泰安 271000
  • 折叠

摘要

Abstract

Nematodes are widely used as model organisms in biological researches.To address the chal-lenges during nematode activity screening stage,such as the small size of individual nematode target,easy to be obscured,and the poor lightweight performance and difficult to deploy on edge devices of existing nematode detection models,we proposed an improved YOLOv7-tiny nematode detection model tailored for edge devices.The MobileOne network was employed as the backbone network to boost the model's computational efficiency.The Generalized Feature Pyramid Network(GFPN)was incorporated to refine the Neck layer to enable adap-tive fusion of"skip-layer"and"cross-scale"approaches,thereby enriching the representation of image fea-tures.Additionally,a dual-layer routing attention mechanism(BRA)was introduced into the Neck layer to enhance the feature extraction capability for obscured targets.The fourth detection head was added into the Head layer to enhance the detection capability for small targets.The INT8 quantization processing was adopted for the model using the perceptual quantization method,with an asymmetric quantization strategy applied to the activation values to further reduce computational load and achieve model lightweighting.The improved model was deployed and tested on the edge device Jetson Nano.The experimental results indicated that compared to the original model,the improved model showed an increase in mean average precision(mAP@0.5)by 2.7 percentage points,a reduction in computational demand(GFLOPs)by 67.71%,and an increase in detection frame rate(FPS)by 23.01%.These results demonstrated that the accuracy of the improved model was signifi-cantly enhanced,and it could be enabled rapid and precise detection of nematode targets on edge devices.

关键词

边缘设备/线虫检测/YOLOv7-tiny/轻量化

Key words

Edge device/Nematode detection/YOLOv7-tiny/Lightweight

分类

农业科学

引用本文复制引用

李耀东,侯文进,侯华鑫,王秀丽,王东,曲建平,周波,刘璋..面向边缘设备的改进YOLOv7-tiny线虫检测模型[J].山东农业科学,2025,57(10):149-157,9.

基金项目

山东省重大科技创新工程项目(2019JZZY010716) (2019JZZY010716)

山东农业大学横向科研项目(233024) (233024)

山东省大学生创新创业训练计划项目(S202310434217) (S202310434217)

山东农业科学

OA北大核心

1001-4942

访问量0
|
下载量0
段落导航相关论文