| 注册
首页|期刊导航|计算机技术与发展|基于动态卷积与注意力机制的水下图像增强

基于动态卷积与注意力机制的水下图像增强

田乾坤 宋伟

计算机技术与发展2025,Vol.35Issue(11):28-37,10.
计算机技术与发展2025,Vol.35Issue(11):28-37,10.DOI:10.20165/j.cnki.ISSN1673-629X.2025.0171

基于动态卷积与注意力机制的水下图像增强

Underwater Image Enhancement Based on Dynamic Convolution and Attention Mechanism

田乾坤 1宋伟1

作者信息

  • 1. 中央民族大学 信息工程学院,北京 100081
  • 折叠

摘要

Abstract

Underwater images often suffer from blurring,low contrast,and color distortion due to scattering and absorption,which seriously affect the visual quality of underwater images.To address these issues,we propose D-SCAT(Dynamic Spatial-Channel Attention Transformer),an underwater image enhancement model based on Swin Transformer.Firstly,the network adopts an encoder-bottleneck-decoder structure,integrating spatial and channel attention for joint processing of spatial structure and color features.Secondly,the bottleneck layer captures global features and long-range dependencies using Swin Transformer's local window self-attention.Finally,shallow features are fused at the decoder to enhance details and textures,generating natural and realistic underwater images.Experimental results on UIEB and EUVP datasets show that D-SCAT outperforms classical and state-of-the-art methods.On the UIEB test set,it achieves PSNR of 24.105 1 dB,SSIM of 0.914 0,and MSE of 0.006 1,surpassing comparison methods by 0.649 6 dB,0.017 6,and0.000 9,respectively.The model effectively corrects color distortion,restores details,and enhances contrast and sharpness.

关键词

水下图像增强/空间-通道注意力/Swin Transformer/自适应卷积/深度学习

Key words

underwater image enhancement/spatial-channel attention/Swin Transformer/adaptive convolution/deep learning

分类

信息技术与安全科学

引用本文复制引用

田乾坤,宋伟..基于动态卷积与注意力机制的水下图像增强[J].计算机技术与发展,2025,35(11):28-37,10.

基金项目

国家重点研发计划项目(2024YFC2815004,2024YFC2815205) (2024YFC2815004,2024YFC2815205)

计算机技术与发展

1673-629X

访问量2
|
下载量0
段落导航相关论文