| 注册
首页|期刊导航|网络安全与数据治理|基于同态加密的AI模型参数安全计算与防泄露方法

基于同态加密的AI模型参数安全计算与防泄露方法

张恒 廖尚斌 张陈颖

网络安全与数据治理2025,Vol.44Issue(11):7-11,17,6.
网络安全与数据治理2025,Vol.44Issue(11):7-11,17,6.DOI:10.19358/j.issn.2097-1788.2025.11.002

基于同态加密的AI模型参数安全计算与防泄露方法

Secure computation and anti-leakage methods for AI model parameters based on homomorphic encryption

张恒 1廖尚斌 1张陈颖1

作者信息

  • 1. 中国移动通信集团福建有限公司,福建 福州 350000
  • 折叠

摘要

Abstract

With the extensive application of artificial intelligence in sensitive fields such as healthcare and finance,the privacy protection of model parameters and training data has become a critical issue.This paper proposes a secure computation and anti-leakage method for AI model parameters based on homomorphic encryption(HE).The method employs the CKKS scheme to im-plement parameter encryption,forward inference,and gradient updates in the ciphertext space,thereby avoiding the risk of plain-text exposure during training.The results demonstrate that HE-SGD achieves a maximum accuracy of 99.1%on MNIST.In terms of computational overhead,it balances efficiency and security,with an information leakage risk index close to 0.0.The study in-dicates that the proposed method maintains model precision while achieving efficient and secure computation with nearly zero leak-age risk,showing strong application value.

关键词

模型参数/隐私保护/同态加密/CKKS方案/梯度更新

Key words

model parameters/privacy protection/homomorphic encryption/CKKS scheme/gradient updates

分类

计算机与自动化

引用本文复制引用

张恒,廖尚斌,张陈颖..基于同态加密的AI模型参数安全计算与防泄露方法[J].网络安全与数据治理,2025,44(11):7-11,17,6.

网络安全与数据治理

2097-1788

访问量0
|
下载量0
段落导航相关论文