| 注册
首页|期刊导航|网络安全与数据治理|基于改进U-Net的多尺度层级融合去雾网络

基于改进U-Net的多尺度层级融合去雾网络

季云云 熊亮

网络安全与数据治理2025,Vol.44Issue(11):30-37,8.
网络安全与数据治理2025,Vol.44Issue(11):30-37,8.DOI:10.19358/j.issn.2097-1788.2025.11.006

基于改进U-Net的多尺度层级融合去雾网络

Multi-scale hierarchical fusion dehazing network based on enhanced U-Net

季云云 1熊亮2

作者信息

  • 1. 马鞍山学院 大数据与人工智能学院,安徽 马鞍山 243100
  • 2. 国轩高科动力能源有限公司,安徽 合肥 230041
  • 折叠

摘要

Abstract

In computer vision tasks,the presence of haze leads to a degradation in image quality.Existing dehazing methods fre-quently suffer from residual haze and color distortion due to insufficient joint modeling of global and local features and the lack of adaptive processing for multi-scale haze concentrations.The proposed multi-scale hierarchical fusion dehazing network based on enhanced U-Net captures hierarchical features through multi-scale inputs and refines information transmission via hierarchical fea-ture fusion.Adjacent layers embed feature enhancement blocks to adaptively focus on key regions,while cross-layer cross-fusion achieves multi-scale complementarity,facilitating full internal information flow.Experiments demonstrate that the method outper-forms comparative approaches on both synthetic and real-world datasets,particularly in detail recovery,color fidelity,and gener-alization to real scenes.

关键词

图像去雾/U-Net/多尺度/特征融合

Key words

image dehazing/U-Net/multi-scale/feature fusion

分类

计算机与自动化

引用本文复制引用

季云云,熊亮..基于改进U-Net的多尺度层级融合去雾网络[J].网络安全与数据治理,2025,44(11):30-37,8.

网络安全与数据治理

2097-1788

访问量0
|
下载量0
段落导航相关论文