| 注册
首页|期刊导航|水资源与水工程学报|考虑物理约束的结构化状态空间洪水预报模型研究

考虑物理约束的结构化状态空间洪水预报模型研究

张晶 葛阳 孙加龙 平扬 张振洲 刘智勇

水资源与水工程学报2025,Vol.36Issue(5):93-101,9.
水资源与水工程学报2025,Vol.36Issue(5):93-101,9.DOI:10.11705/j.issn.1672-643X.2025.05.11

考虑物理约束的结构化状态空间洪水预报模型研究

Structured state space flood forecasting model with physical constraints

张晶 1葛阳 2孙加龙 1平扬 1张振洲 1刘智勇2

作者信息

  • 1. 中电建生态环境集团有限公司,广东 深圳 518101
  • 2. 中山大学 水资源与环境研究中心,广东 广州 510275
  • 折叠

摘要

Abstract

Existing deep learning models for flood forecasting face challenges of performance decay when dealing with long-term dependencies and a lack of physical constraints.To address these issues,this study proposes a flood forecasting framework,Hydro-S4D,which integrates a structured state space model(S4D)with a novel hydrology-specific loss function(HydroLoss).The framework leverages the S4D model's capability to efficiently capture long-term dependencies,and proposes a customized composite loss function HydroLoss.This function integrates weighted MSE,trend consistency,peak attention,and phase correction to embed physical hydrological constraints into the model training process.Application to a typical hydrological station in the Pearl River Delta demonstrates that the framework significantly im-proves forecast accuracy,achieving a Nash-Sutcliffe efficiency(NSE)of 0.9 for 1-day lead time and maintaining it at approximately 0.6 for 7-day lead time.The proposed model outperforms benchmark models,such as the long short-term memory(LSTM)network,in fitting flood peaks,preserving hydro-graph shapes,and providing balanced uncertainty quantification,thereby addressing their overconfidence or underconfidence issues.The results show that integrating advanced sequence models with domain-a-ware loss functions is an effective approach to enhancing the accuracy and reliability of medium-and long-term flood forecasts.The proposed Hydro-S4D framework imparts great physical realism and practical val-ue to data-driven hydrological models.

关键词

洪水预报/物理约束/深度学习/结构化状态空间模型/Hydro-S4D模型/珠江流域

Key words

flood forecasting/physical constraint/deep learning/structured state space model/Hydro-S4D model/the Pearl River Basin

分类

地球科学

引用本文复制引用

张晶,葛阳,孙加龙,平扬,张振洲,刘智勇..考虑物理约束的结构化状态空间洪水预报模型研究[J].水资源与水工程学报,2025,36(5):93-101,9.

基金项目

国家重点研发计划项目(2023YFC3207500) (2023YFC3207500)

中国电力建设集团重点科技研发项目(DJ-ZDXM-2023-39) (DJ-ZDXM-2023-39)

水资源与水工程学报

OA北大核心

1672-643X

访问量0
|
下载量0
段落导航相关论文