| 注册
首页|期刊导航|现代信息科技|基于注意力机制的递进式特征提取去雾网络

基于注意力机制的递进式特征提取去雾网络

程小园 王炳文 李葆光 封蕾 金能智

现代信息科技2025,Vol.9Issue(22):30-34,39,6.
现代信息科技2025,Vol.9Issue(22):30-34,39,6.DOI:10.19850/j.cnki.2096-4706.2025.22.006

基于注意力机制的递进式特征提取去雾网络

Progressive Feature Extraction Dehazing Network Based on Attention Mechanism

程小园 1王炳文 1李葆光 1封蕾 1金能智1

作者信息

  • 1. 甘肃省计算中心,甘肃 兰州 730030||甘肃省先进计算重点实验室,甘肃 兰州 730030
  • 折叠

摘要

Abstract

Aiming at the limitations of existing single image dehazing algorithms in terms of accuracy and detail retention,a progressive feature extraction dehazing network based on attention is constructed.Taking AOD-Net as the benchmark framework,the feature interaction path is reconstructed by pointwise convolution and multi-dimensional collaborative Attention Mechanism,which reduces the scale of model parameters and improves the computational efficiency.The progressive feature extraction network structure is designed,and the multi-scale feature fusion strategy is used to enhance the separation ability of the network to the long-range fog concentration gradient and high-frequency details.The multi-scale structural similarity constraint and the adaptive loss optimization mechanism are further integrated to significantly improve the consistency of texture structure and the balance of color distribution in the restored image.The experimental results show that the proposed network exhibits excellent detail retention ability and visual naturalness in both synthetic and real fog image scenes.

关键词

图像去雾/卷积神经网络/注意力机制/多尺度网络

Key words

image dehazing/Convolutional Neural Network/Attention Mechanism/multi-scale network

分类

信息技术与安全科学

引用本文复制引用

程小园,王炳文,李葆光,封蕾,金能智..基于注意力机制的递进式特征提取去雾网络[J].现代信息科技,2025,9(22):30-34,39,6.

基金项目

甘肃省科技计划项目(24CXTA002) (24CXTA002)

现代信息科技

2096-4706

访问量1
|
下载量0
段落导航相关论文