| 注册
首页|期刊导航|现代医药卫生|基于临床肿瘤样本DNA甲基化组的机器学习分类器预测放疗反应

基于临床肿瘤样本DNA甲基化组的机器学习分类器预测放疗反应

施小龙 唐超 吴颜 綦俊

现代医药卫生2025,Vol.41Issue(11):2506-2514,9.
现代医药卫生2025,Vol.41Issue(11):2506-2514,9.DOI:10.3969/j.issn.1009-5519.2025.11.002

基于临床肿瘤样本DNA甲基化组的机器学习分类器预测放疗反应

Machine learning classifiers based on DNA methylation profiles of clinical tumor samples predict radiotherapy responses

施小龙 1唐超 1吴颜 1綦俊2

作者信息

  • 1. 重庆大学附属肿瘤医院放射肿瘤治疗中心/放射生物中心实验室/重庆市癌症转移与个体化诊治转化研究重点实验室,重庆 400030
  • 2. 重庆市长寿区人民医院,重庆 401200
  • 折叠

摘要

Abstract

Objective To construct a machine learning model using DNA methylation features to pre-dict radiotherapy(RT)response in cancer patients.Methods By integrating and analyzing 10 types of cancer and whole-genome DNA methylation data alongside RT efficacy data from 843 patients,differentially methyla-ted sites(DMSs)significantly associated with radio sensitivity were identified.Machine learning classifier models were developed based on these characteristic DMSs.Results The machine learning classifier construc-ted based on methylation signals from multiple CpG sites(AUC=0.889-1.000)was significantly superior to a single DMS(AUC=0.594-0.956,P<0.001)in distinguishing between radio-sensitive and radio-resistant patients.The model could also accurately predict the overall survival period of patients.Conclusion The ma-chine learning model based on DNA methylome features has clinical application value in predicting the efficacy and prognosis of RT.

关键词

放射治疗/DNA甲基化/机器学习分类器/癌症治疗/放疗敏感性预测

Key words

Radiotherapy/DNA methylation/Machine learning classifiers/Cancer treatment/Prediction of radio-sensitivity

分类

医药卫生

引用本文复制引用

施小龙,唐超,吴颜,綦俊..基于临床肿瘤样本DNA甲基化组的机器学习分类器预测放疗反应[J].现代医药卫生,2025,41(11):2506-2514,9.

基金项目

重庆市科卫联合医学科研面上项目(2024MSXM065 ()

2023GGXM002) ()

重庆市长寿区科技局项目(2024023CSKJ). (2024023CSKJ)

现代医药卫生

1009-5519

访问量0
|
下载量0
段落导航相关论文