| 注册
首页|期刊导航|烟草科技|基于改进YOLOv8s模型的烟草5种常见病害的智能检测

基于改进YOLOv8s模型的烟草5种常见病害的智能检测

高睿 荆茹彬 刘春菊 孙刚 黄择祥 高强 姜红花

烟草科技2025,Vol.58Issue(11):33-43,11.
烟草科技2025,Vol.58Issue(11):33-43,11.DOI:10.16135/j.issn1002-0861.2025.0226

基于改进YOLOv8s模型的烟草5种常见病害的智能检测

Intelligent detection for five common tobacco diseases based on improved YOLOv8s model

高睿 1荆茹彬 2刘春菊 3孙刚 4黄择祥 5高强 6姜红花1

作者信息

  • 1. 山东农业大学信息科学与工程学院,山东省泰安市泰山区岱宗大街61号 271018||山东省智慧农业特色实验室,山东省泰安市泰山区岱宗大街61号 271018
  • 2. 山东农业大学信息科学与工程学院,山东省泰安市泰山区岱宗大街61号 271018
  • 3. 山东潍坊烟草有限公司,山东省潍坊市奎文区健康东街6787号 261205
  • 4. 中国科学院空天信息创新研究院遥感科学国家重点实验室,北京市海淀区北四环西路19号 100101
  • 5. 中国烟草总公司山东省公司,济南市高新区龙奥北路1067号 250101
  • 6. 山东临沂烟草有限公司,山东省临沂市兰山区北城新区智圣路3号 276003
  • 折叠

摘要

Abstract

In order to achieve rapid identification and accurate classification of tobacco diseases,directed at the challenges of complex diseases distribution in tobacco fields,varying degrees of leaf overlap and obstruction,a novel tobacco disease detection method based on improved YOLOv8s targeting at tobacco brown spots,tobacco mosaic virus,tobacco cucumber mosaic virus,tobacco weather fleck,and tobacco wildfire was proposed.The study shows:1)Based on the YOLOv8s object detection framework,a multi-scale feature module(C2f_MSBlock)was constructed.This module reduced the number of model parameters while ensuring the detection accuracy through hierarchical feature fusion and heterogeneous convolution kernel selection,thereby achieving the light weighting of the model.2)The introduction of SEAM(Spatially Enhanced Attention Module)attention mechanism combined with the depth-wise separable convolution and residual connections which compensated for the response loss in areas obscured by leaves,thereby effectively addressed the issue of disease detection omission caused by leaf overlap and occlusion.3)Spatial Pyramid Pooling with Efficient Layer Aggregation Network(SPPELAN)that replaced the original structure,enhanced the model's capability to detect small target lesions in real tobacco field environments through multi-scale pooling and efficient feature aggregation.The results indicated that the mean average precision(mAP)of the improved model reaches 92.5%,representing a 9.2%increase compared to the original YOLOv8s model,while the model weight reduced by 20.4%.Compared to other mainstream models such as SSD,Faster R-CNN,RT-DETR,YOLOv5s,and YOLOv12s,the improved model demonstrated significant advantages in both the detection accuracy and model light weighting.

关键词

烟草/病害/智能检测/YOLOv8s/深度学习

Key words

Tobacco/Disease/Intelligent detection/YOLOv8s/Deep learning

分类

轻工业

引用本文复制引用

高睿,荆茹彬,刘春菊,孙刚,黄择祥,高强,姜红花..基于改进YOLOv8s模型的烟草5种常见病害的智能检测[J].烟草科技,2025,58(11):33-43,11.

基金项目

山东潍坊烟草有限公司科技计划项目"烟草叶部病害远程智能识别系统研究"[2022]6号. ()

烟草科技

OA北大核心

1002-0861

访问量0
|
下载量0
段落导航相关论文