| 注册
首页|期刊导航|烟草科技|基于回潮吸湿机理与深度强化学习的松散回潮机预测控制方法设计

基于回潮吸湿机理与深度强化学习的松散回潮机预测控制方法设计

陈传通 张朋 廖康 侯进生 梁盟 米强 高卫 武宝生 李斌

烟草科技2025,Vol.58Issue(11):66-75,10.
烟草科技2025,Vol.58Issue(11):66-75,10.DOI:10.16135/j.issn1002-0861.2025.0256

基于回潮吸湿机理与深度强化学习的松散回潮机预测控制方法设计

Design of a predictive control method for cut leaf loosening and conditioning machines based on moisture absorption mechanism of conditioning and deep reinforcement learning

陈传通 1张朋 1廖康 1侯进生 1梁盟 1米强 1高卫 1武宝生 2李斌1

作者信息

  • 1. 山东中烟工业有限责任公司济南卷烟厂,济南市高新区科航路2006号 250104
  • 2. 秦皇岛烟草机械有限责任公司,河北省秦皇岛市经济技术开发区龙海道67号 066000
  • 折叠

摘要

Abstract

To improve the moisture control accuracy in output tobacco from loosening and conditioning machines,an intelligent moisture predictive control method based on moisture absorption mechanism during conditioning and deep reinforcement learning was proposed.Firstly,the Long Short-Term Memory(LSTM)model was employed as the base model to predict moisture content in output tobacco.Secondly,an improved prediction model was formed by integrating the moisture absorption mechanism with the LSTM model.Then LSTM-Actor-Critic(LAC)model was built by embedding the predictive model into the Actor-Critic network architecture through deep reinforcement learning to achieve dynamic optimization control.Finally,based on the model prediction and control results,both the prediction and the control models were iteratively adjusted and optimized.The results showed that,compared with the conventional proportional integral derivative(PID)control method:1)the proposed intelligent control strategy was able to obtain a relatively small range of the standard deviations(σ)of the moisture content or temperature of the output tobacco from the production data of the vast majority of 50 consecutive batches selected;2)the process capability(CP)index of the moisture content in the output tobacco increased by 48%with a 17%reduction in standard deviation,while the CP for temperature of the output tobacco increased by 17%with a 16%reduction in standard deviation.Both the moisture content and temperature fluctuated slightly,indicating more precise control.This method achieved collaborative optimization control for both the temperature and humidity indexes without compromising the control effectiveness in the output tobacco,providing technical support for intelligent control of leaf moisture content during loosening and conditioning process for cigarette manufacturing.

关键词

松散回潮/回潮机理/预测控制/强化学习/控制精度

Key words

Loosening and conditioning/Conditioning mechanism/Predictive control/Reinforcement learning/Control accuracy

分类

轻工业

引用本文复制引用

陈传通,张朋,廖康,侯进生,梁盟,米强,高卫,武宝生,李斌..基于回潮吸湿机理与深度强化学习的松散回潮机预测控制方法设计[J].烟草科技,2025,58(11):66-75,10.

基金项目

山东中烟工业有限责任公司重大专项科技项目"济南卷烟厂细支烟智能产线研究与实现"(202201009). (202201009)

烟草科技

OA北大核心

1002-0861

访问量0
|
下载量0
段落导航相关论文