移动通信2025,Vol.49Issue(11):47-54,8.DOI:10.3969/j.issn.1006-1010.20250922-0001
超大规模智能反射面近场鲁棒追踪方案
Robust Near-Field Tracking Scheme for Extremely Large-Scale Intelligent Reflecting Surfaces
摘要
Abstract
Addressing narrow-beam misalignment challenges in 6G near-field communications,this paper proposes a robust tracking method assisted by extremely large-scale intelligent reflecting surface(XL-IRS).A single-antenna base station transmits probe signals to an XL-IRS that dynamically reconfigures its reflecting elements for continuous mobile target tracking.To overcome error accumulation limitations of conventional point-estimation beam steering,an unscented Kalman filter estimates target states,with posterior statistics defining a confidence ellipse around predicted positions.The robust tracking problem is formulated as worst-case gain maximization within this confidence region.A two-stage robust beamforming design addresses near-field steering vector nonlinearity and infinite constraints:sector-based ellipse partitioning ensures Taylor approximation accuracy,while S-procedure transforms worst-case constraints into linear matrix inequalities for convex optimization.Simulations under circular trajectories and narrow focal regions show the proposed scheme maintains stable high beam gain throughout observation periods,effectively mitigating misalignment-induced performance degradation versus non-robust baselines and significantly enhancing mobile target tracking accuracy.关键词
超大规模智能反射面/近场通信/鲁棒波束追踪Key words
extremely large-scale intelligent reflecting surface/near-field communication/robust beam tracking分类
信息技术与安全科学引用本文复制引用
周超,游昌盛,穆江涛,郑倍雄..超大规模智能反射面近场鲁棒追踪方案[J].移动通信,2025,49(11):47-54,8.基金项目
国家自然科学基金项目(62201242) (62201242)
深圳市科技计划项目(20231115131633001,JCYJ20240813094212016) (20231115131633001,JCYJ20240813094212016)
广东省基础与应用基础研究基金(2024A1515010097) (2024A1515010097)