| 注册
首页|期刊导航|中国科学院大学学报|基于特征优化贝叶斯分类算法的中国城市碳强度分析

基于特征优化贝叶斯分类算法的中国城市碳强度分析

宋文明 邹嘉龄 唐志鹏

中国科学院大学学报2025,Vol.42Issue(6):747-757,11.
中国科学院大学学报2025,Vol.42Issue(6):747-757,11.DOI:10.7523/j.ucas.2023.090

基于特征优化贝叶斯分类算法的中国城市碳强度分析

Carbon intensity analysis of Chinese cities based on feature optimization Bayesian classification algorithm

宋文明 1邹嘉龄 2唐志鹏1

作者信息

  • 1. 中国科学院地理科学与资源研究所区域可持续发展分析与模拟院重点实验室,北京 100101||中国科学院大学资源与环境学院,北京 100049
  • 2. 广东外语外贸大学广东国际战略研究院,广州 510020
  • 折叠

摘要

Abstract

Cities serve as the primary hubs for human activities,and the successful realization of China's"Dual Carbon"goals critically hinges on the effective reduction of carbon emissions in urban areas.However,due to the lack of detailed disaggregated data on energy consumption by source,urban carbon emission accounting has emerged as a crucial research area.This study,based on an enhanced Bayesian classification algorithm,leverages provincial-level energy consumption data from 2005 to 2019.It combines this data with various multi-dimensional attributes,including socioeconomic indicators,to determine carbon intensity types.The approach involves training on optimized attributes corresponding to provincial-level carbon intensity and then downscaling them to identify carbon intensity types at the city level.Comparative analysis with data from the carbon emission assessment database system(CEADs)and traditional methods highlights the advantages of the proposed feature-optimized Bayesian classification method.Furthermore,this method unveils the carbon intensity evolution of 282 major Chinese cities from 2005 to 2019,revealing a notable shift from high to low carbon intensity in the majority of cities.Notably,significant disparities persist in carbon intensity types and improvement trends between cities in the northern and southern regions.In the future,special attention should be paid to carbon intensity reduction efforts in resource-rich cities in central and western China.Additionally,the feature-optimized Bayesian classification method proposed in this study exhibits strong scalability,holding promise for applications at smaller scales,including county-level carbon intensity assessments.

关键词

特征优化/贝叶斯分类算法/城市碳强度/演化

Key words

feature optimization/Bayesian classification algorithm/urban carbon intensity/evolution

分类

社会科学

引用本文复制引用

宋文明,邹嘉龄,唐志鹏..基于特征优化贝叶斯分类算法的中国城市碳强度分析[J].中国科学院大学学报,2025,42(6):747-757,11.

基金项目

中国科学院战略性先导科技专项(A类)(XDA28060301)资助 (A类)

中国科学院大学学报

OA北大核心

2095-6134

访问量0
|
下载量0
段落导航相关论文