| 注册
首页|期刊导航|中国瓜菜|基于YOLO-LTD的轻量化温室番茄成熟度检测

基于YOLO-LTD的轻量化温室番茄成熟度检测

李全武 杨贝贝 梅俸铜 唐源

中国瓜菜2025,Vol.38Issue(11):52-64,13.
中国瓜菜2025,Vol.38Issue(11):52-64,13.DOI:10.16861/j.cnki.zggc.2025.0027

基于YOLO-LTD的轻量化温室番茄成熟度检测

Lightweight maturity detection of greenhouse tomato based on YO-LO-LTD

李全武 1杨贝贝 1梅俸铜 2唐源3

作者信息

  • 1. 郑州信息科技职业学院 郑州 450046
  • 2. 西安电子科技大学杭州研究院 杭州 310000
  • 3. 成都理工大学计算机与网络安全学院 成都 610059
  • 折叠

摘要

Abstract

To address the issues of missed and false detections caused by complex backgrounds and scale variations in tomato fruit maturity detection,as well as the limitations of existing methods in terms of efficiency and deployment,this study proposes a lightweight greenhouse tomato maturity detection algorithm based on YOLO-LTD.Building upon YO-LOv11-n as the baseline,the model introduces the following innovations:(1)A cross-attention module is incorporated into the backbone network to mitigate the interference of occlusions between leaves,stems,and fruits on detection accura-cy,thereby enhancing feature extraction capabilities for key regions.(2)The lightweight GSConv module replaces stan-dard convolutions in the neck network,optimizing computational efficiency while preserving feature representation,and reducing both model parameter count and computational complexity.(3)An adaptive spatial feature fusion module is embedded in the head network to alleviate inconsistencies between multi-scale features,further improving robustness and generalization.Experimental results demonstrate that YOLO-LTD achieves a mean average precision(mAP),recall,and accuracy of 94.23%,95.44%,and 92.07%,respectively,with an inference time of 7.21 ms and a compact model size of 5.18 Mb.Compared to YOLOv11-n,YOLO-LTD improves mAP,recall,and accuracy by 2.50 percentage points,2.80 per-centage points,and 1.60 percentage points,respectively,while exhibiting higher efficiency and smaller model size.When evaluated against Mask R-CNN,Faster R-CNN,and other YOLO variants,YOLO-LTD demonstrates superior perfor-mance in both accuracy and efficiency,highlighting its potential for widespread application in greenhouse environments.This research provides a theoretical foundation and technical support for orchard yield estimation,crop growth monitor-ing,cultivation optimization,and the development of tomato-picking robots.

关键词

番茄/成熟度检测/YOLO-LTD/YOLOv11/GSConv/注意力机制/自适应空间特征融合/轻量化

Key words

Tomato/Maturity detection/YOLO-LTD/YOLOv11/GSConv/Attention mechanism/Adaptive spatial fea-ture fusion/Lightweight model

分类

农业科技

引用本文复制引用

李全武,杨贝贝,梅俸铜,唐源..基于YOLO-LTD的轻量化温室番茄成熟度检测[J].中国瓜菜,2025,38(11):52-64,13.

基金项目

四川省科技计划项目(2021YFN0117) (2021YFN0117)

中国瓜菜

OA北大核心

1673-2871

访问量0
|
下载量0
段落导航相关论文