| 注册
首页|期刊导航|中国医学教育技术|DeepSeek在中国临床执业医师资格模拟考试中的应用研究

DeepSeek在中国临床执业医师资格模拟考试中的应用研究

李蒙 金岑 金琦 单连弋 温馨 李健维 张雪 张丽

中国医学教育技术2025,Vol.39Issue(6):760-766,7.
中国医学教育技术2025,Vol.39Issue(6):760-766,7.DOI:10.13566/j.cnki.cmet.cn61-1317/g4.202506012

DeepSeek在中国临床执业医师资格模拟考试中的应用研究

Research on the application of DeepSeek in the simulated China National Medical Licensing Examination

李蒙 1金岑 1金琦 2单连弋 3温馨 1李健维 1张雪 1张丽1

作者信息

  • 1. 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院影像诊断科,北京 100021
  • 2. 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院党委办公室,北京 100021
  • 3. 莒县人民医院重症医学科,山东 日照 276500
  • 折叠

摘要

Abstract

Objective To assess the performance of DeepSeek-R1,a deep generative pre-trained model,in the simulated Chinese National Medical Licensing Examination and explore its strengths and limitations.Methods A examination paper with 300 simulated questions convering vari-ous formats and disciplinary knowledge was input into DeepSeek-R1 and its responses were recorded.Incorrect answers were challenged to evaluate its ability to correct errors.Results DeepSeek-R1 achieved an overall accuracy of 94.3%(283/300),and after challenges,accuracy rose to 97.3%(292/300).Accuracy varied significantly across question types(P<0.05),with A2-type scoring the lowest(84.3%).Clinical and non-clinical question accuracies were 93.1%and 97.6%,respectively,with no significant difference.Performance was slightly better on lower-order(97.1%)than higher-order ques-tions(92.8%),without statistical significance.The model showed high confidence(100%)in all re-sponses,including incorrect ones.Conclusion DeepSeek-R1 demonstrated strong medical knowl-edge and reasoning skills,indicating potential for use in medical education and clinical support.How-ever,its weaker performance on complex cases and unjustified confidence in errors highlight risks of AI hallucination.Human oversight remains essential for safe and effective application.

关键词

DeepSeek/继续教育/中国临床执业医师资格考试/AI幻觉/自然语言处理

Key words

DeepSeek/continuing education/China National Medical Licensing Examina-tion/AI hallucination/natural language processing

分类

教育学

引用本文复制引用

李蒙,金岑,金琦,单连弋,温馨,李健维,张雪,张丽..DeepSeek在中国临床执业医师资格模拟考试中的应用研究[J].中国医学教育技术,2025,39(6):760-766,7.

基金项目

中央高水平医院临床科研业务费资助 ()

中国医学教育技术

1004-5287

访问量1
|
下载量0
段落导航相关论文