| 注册
首页|期刊导航|Information Processing in Agriculture|A novel random forest-based approach for the non-destructive and explainable estimation of ammonia and chlorophyll in fresh-cut rocket leaves

A novel random forest-based approach for the non-destructive and explainable estimation of ammonia and chlorophyll in fresh-cut rocket leaves

Stefano Polimena Gianvito Pio Maria Cefola Michela Palumbo Michelangelo Ceci Giovanni Attolico

Information Processing in Agriculture2025,Vol.12Issue(2):P.221-231,11.
Information Processing in Agriculture2025,Vol.12Issue(2):P.221-231,11.DOI:10.1016/j.inpa.2024.09.002

A novel random forest-based approach for the non-destructive and explainable estimation of ammonia and chlorophyll in fresh-cut rocket leaves

Stefano Polimena 1Gianvito Pio 1Maria Cefola 2Michela Palumbo 3Michelangelo Ceci 4Giovanni Attolico5

作者信息

  • 1. Department of Computer Science,University of Bari Aldo Moro,Via E.Orabona 4,70125 Bari,Italy Big Data Laboratory,National Interuniversity Consortium for Informatics(CINI),Via Ariosto 25,00185 Rome,Italy
  • 2. Institute of Sciences of Food Production,National Research Council of Italy,c/o CS-DAT,Via Michele Protano,71121 Foggia,Italy
  • 3. Institute of Sciences of Food Production,National Research Council of Italy,c/o CS-DAT,Via Michele Protano,71121 Foggia,Italy Department of Science of Agriculture,Food and Environment,University of Foggia,Via Napoli 25,71122 Foggia,Italy
  • 4. Department of Computer Science,University of Bari Aldo Moro,Via E.Orabona 4,70125 Bari,Italy Big Data Laboratory,National Interuniversity Consortium for Informatics(CINI),Via Ariosto 25,00185 Rome,Italy Department of Knowledge Technologies,Jožef Stefan Institute,Jamova cesta 39,1000,Ljubljana,Slovenia
  • 5. Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing,National Research Council of Italy,via Amendola 122/D,70126,Bari,Italy
  • 折叠

摘要

关键词

Fresh-cut rocket leaves/Consumer acceptability/Machine learning/Explainability

分类

轻工纺织

引用本文复制引用

Stefano Polimena,Gianvito Pio,Maria Cefola,Michela Palumbo,Michelangelo Ceci,Giovanni Attolico..A novel random forest-based approach for the non-destructive and explainable estimation of ammonia and chlorophyll in fresh-cut rocket leaves[J].Information Processing in Agriculture,2025,12(2):P.221-231,11.

基金项目

supported by the project FAIR-Future AI Research(PE00000013) (PE00000013)

spoke 6–Symbiotic AI,under the NRRP MUR program funded by the NextGenerationEU and by the project Prin 2017“SUS&LOW-Sustaining low-impact practices in horticulture through non-destructive approach to provide more information on fresh produce history and quality”(grant number:201785Z5H9)from the Italian Ministry of University and Research。 (grant number:201785Z5H9)

Information Processing in Agriculture

2097-0153

访问量1
|
下载量0
段落导航相关论文