华东师范大学学报(自然科学版)Issue(6):1-13,13.DOI:10.3969/j.issn.1000-5641.2025.06.001
由截尾α-稳定过程驱动的种群系统的遍历性
The ergodicity of population dynamics driven by truncated α-stable processes
摘要
Abstract
In order to study the dynamic behavior of biological populations in complex environments,we consider an n-dimensional population model driven by a truncated a-stable process.First of all,a generalized Khasminskii theorem for pure jump systems has been established.Then,the regular points such a system are discussed.Finally,we give a sufficient criterion to verify ergodicity for such a pure jump population dynamic system.关键词
平稳分布/正则点/截尾α-稳定过程Key words
stationary distribution/regular point/truncated α-stable processes分类
数理科学引用本文复制引用
张振中,顾笑凡,童俊波,赵馨,李新平..由截尾α-稳定过程驱动的种群系统的遍历性[J].华东师范大学学报(自然科学版),2025,(6):1-13,13.基金项目
上海市自然科学基金(23ZR1402600) (23ZR1402600)
上海市启明星计划扬帆专项(22YF1400900) (22YF1400900)
东华大学虚拟仿真实验教学项目 ()