| 注册
首页|期刊导航|华东师范大学学报(自然科学版)|基于条件变分自编码器的联邦推荐系统冷启动问题研究

基于条件变分自编码器的联邦推荐系统冷启动问题研究

吕欣樾 黄新力

华东师范大学学报(自然科学版)Issue(6):53-62,10.
华东师范大学学报(自然科学版)Issue(6):53-62,10.DOI:10.3969/j.issn.1000-5641.2025.06.007

基于条件变分自编码器的联邦推荐系统冷启动问题研究

Cold-start problem of federated recommendation systems based on conditional variational autoencoder

吕欣樾 1黄新力1

作者信息

  • 1. 华东师范大学 计算机科学与技术学院,上海 200062
  • 折叠

摘要

Abstract

The cold-start problem of recommendation systems which affects recommendation quality,service experience,privacy,and security,has become one of the most challenging research hotspots in the field.Thus,our study proposed an integrated federated learning framework for conditional variational autoencoders(CVAE),termed as FedCVAE.Individual CVAE models were trained on each client's local data to generate embeddings of users,items,and user interaction sequences.These embeddings were used as inputs for the essential recommendation model.The model's global parameters were aggregated and updated at the server-side,which was subsequently disseminated back to the client-side to support local CVAE models in updating hyperparameters.While the model improves its accuracy in handling sparse data,it also enhances its ability to preserve privacy,thus effectively mitigating the cold-start problem.The experimental results indicate that in three typical cold-start scenarios,the model presented in this paper outperformed mainstream recommendation algorithms.The mean absolute error metric reduces by approximately 0.8%~5.5%,and the Hit@5 metric improves by approximately 1.2%~5.7%.The model demonstrated superior performance,delivering high-quality recommendation services that balance personalized experiences and enhanced privacy protection.

关键词

推荐系统/冷启动/联邦学习/元学习/变分自编码器

Key words

recommendation systems/cold-start/federated learning/meta-learning/variational autoencoder

分类

信息技术与安全科学

引用本文复制引用

吕欣樾,黄新力..基于条件变分自编码器的联邦推荐系统冷启动问题研究[J].华东师范大学学报(自然科学版),2025,(6):53-62,10.

华东师范大学学报(自然科学版)

OA北大核心

1000-5641

访问量0
|
下载量0
段落导航相关论文