| 注册
首页|期刊导航|河北工业科技|基于多模态遥感图像的特征融合模型

基于多模态遥感图像的特征融合模型

王建霞 仇绍祖 杨春金 吴长莉 张晓明

河北工业科技2025,Vol.42Issue(6):499-509,557,12.
河北工业科技2025,Vol.42Issue(6):499-509,557,12.DOI:10.7535/hbgykj.2025yx06001

基于多模态遥感图像的特征融合模型

Feature fusion model based on multi-modal remote sensing images

王建霞 1仇绍祖 1杨春金 2吴长莉 3张晓明1

作者信息

  • 1. 河北科技大学信息科学与工程学院,河北 石家庄 050018
  • 2. 河北太行机械工业有限公司,河北 石家庄 052100
  • 3. 河北科技大学经济管理学院,河北 石家庄 050018
  • 折叠

摘要

Abstract

To address the issues such as limited model accuracy and large parameter scale of traditional single-branch networks in semantic segmentation of remote sensing images,a large-kernel convolution-based multi-modal feature fusion network(LMFNet)module was proposed.An improved large-kernel MobileNetV3(GMBNetV3)was adopted as the parallel backbone,and multi-source features were fused through cross-self-attention enhancement module.The gated aggregator was utilized to integrate abstract and texture information in the decoding stage.On the public datasets Potsdam and Vaihingen,LMFNet was compared with current advanced multi-modal image segmentation models in terms of performance,and ablation experiments were conducted to verify the functions of each module of the model.The results show that LMFNet improves the segmentation performance of mIoU by approximately 0.32 percentage points~6.50 percentage points compared to other advanced multi-modal segmentation models,while reducing the parameter quantity by 29.3%~73.6%,and the inference speed is increased by 1.7%~45.9%on the Potsdam dataset.The proposed model effectively fuses the differences in image features and can perform semantic segmentation of remote sensing images more clearly,providing strong support for instance segmentation of remote sensing images in urban management.

关键词

计算机神经网络/大核卷积/遥感图像分割/多模态/特征融合

Key words

computer neural network/large kernel convolution/remote sensing image segmentation/multi-modal/feature fusion

分类

信息技术与安全科学

引用本文复制引用

王建霞,仇绍祖,杨春金,吴长莉,张晓明..基于多模态遥感图像的特征融合模型[J].河北工业科技,2025,42(6):499-509,557,12.

基金项目

河北省自然科学基金(F2022208002) (F2022208002)

河北工业科技

1008-1534

访问量0
|
下载量0
段落导航相关论文