| 注册
首页|期刊导航|河北工业科技|基于改进WOA和BiLSTM的MBR膜污染预测研究

基于改进WOA和BiLSTM的MBR膜污染预测研究

薛同来 朱志成 刘响岑 张政 周萌

河北工业科技2025,Vol.42Issue(6):558-565,8.
河北工业科技2025,Vol.42Issue(6):558-565,8.DOI:10.7535/hbgykj.2025yx06008

基于改进WOA和BiLSTM的MBR膜污染预测研究

Research on MBR membrane fouling prediction based on improved WOA and BiLSTM

薛同来 1朱志成 2刘响岑 1张政 1周萌1

作者信息

  • 1. 北方工业大学电气与控制工程学院,北京 100144
  • 2. 内蒙古自治区生态环境督察技术支持中心,内蒙古 呼和浩特 010011
  • 折叠

摘要

Abstract

To realize real-time prediction and intelligent monitoring of membrane fouling in Membrane Bioreactor(MBR)systems,a membrane fouling prediction model based on an improved Whale Optimization Algorithm(the Whale Optimization Algorithm integrated with a global search strategy,referred to as the Gravitational Search Whale Optimization Algorithm,GS-WOA)and a Bidirectional Long Short-Term Memory(BiLSTM)neural network was developed.First,monitoring data samples were standardized,and the BiLSTM neural network was adopted as the basic prediction framework to fully utilize its bidirectional temporal feature extraction capability for capturing the dynamic variation of the fouling process.Then,the Whale Optimization Algorithm(WOA)was improved by introducing a gravitational search mechanism and adaptive inertia weight to globally optimize BiLSTM hyperparameters such as learning rate,number of hidden neurons,and time step,thereby balancing global exploration and local exploitation.Finally,the optimized model was trained and validated using actual operational data.The results show that the GS-WOA-BiLSTM model achieves a prediction accuracy of R2=0.983 7,improving by approximately 6.6%compared with the LSTM model,while the mean absolute error and root mean square error are reduced by 28.1%and 19.9%,respectively.The predicted values exhibited excellent agreement with measured data.This method enables high-precision prediction and trend forecasting of membrane flux and transmembrane pressure,providing reliable technical support for intelligent monitoring and optimized operation of MBR systems.

关键词

水污染防治工程/MBR膜/膜污染预测/改进鲸鱼优化算法/BiLSTM神经网络

Key words

water pollution control engineering/MBR membrane/membrane fouling prediction/improved Whale Optimiza-tion Algorithm/BiLSTM neural network

分类

资源环境

引用本文复制引用

薛同来,朱志成,刘响岑,张政,周萌..基于改进WOA和BiLSTM的MBR膜污染预测研究[J].河北工业科技,2025,42(6):558-565,8.

基金项目

国家自然科学基金(62273007) (62273007)

北京市教育委员会科学研究计划项目(KM202110009013) (KM202110009013)

河北工业科技

1008-1534

访问量0
|
下载量0
段落导航相关论文